explain ruff degradation in detail
Answers
In 1898, Otto Ruff published his work on the transformation of D-Glucose to D-Arabinose later called the Ruff degradation. In this reaction, D-Glucose is converted to D-Arabinose.In this reaction, the terminal aldehyde group is converted to a carboxylic acid group, using selective oxidation of the aldehyde using Bromine water and then converted to gluconate ion. Next, Fe(OAc)3 with 30% of H2O2 is added.
In 1898, Otto Ruff published his work on the transformation of D-Glucose to D-Arabinose later called the Ruff degradation. In this reaction, D-Glucose is converted to D-Arabinose.In this reaction, the terminal aldehyde group is converted to a carboxylic acid group, using selective oxidation of the aldehyde using Bromine water and then converted to gluconate ion. Next, Fe(OAc)3 with 30% of H2O2 is added.Thus COO- ion will form CO2 and a stereo selective compound will form. And below -CH2OH will convert to -CHO group through the reduction of iron from its +3 state to +2 state, thus forming D-Arabinose.
In 1898, Otto Ruff published his work on the transformation of D-Glucose to D-Arabinose later called the Ruff degradation. In this reaction, D-Glucose is converted to D-Arabinose.In this reaction, the terminal aldehyde group is converted to a carboxylic acid group, using selective oxidation of the aldehyde using Bromine water and then converted to gluconate ion. Next, Fe(OAc)3 with 30% of H2O2 is added.Thus COO- ion will form CO2 and a stereo selective compound will form. And below -CH2OH will convert to -CHO group through the reduction of iron from its +3 state to +2 state, thus forming D-Arabinose.Hexoses converted to pentoses by Ruff degradation
In 1898, Otto Ruff published his work on the transformation of D-Glucose to D-Arabinose later called the Ruff degradation. In this reaction, D-Glucose is converted to D-Arabinose.In this reaction, the terminal aldehyde group is converted to a carboxylic acid group, using selective oxidation of the aldehyde using Bromine water and then converted to gluconate ion. Next, Fe(OAc)3 with 30% of H2O2 is added.Thus COO- ion will form CO2 and a stereo selective compound will form. And below -CH2OH will convert to -CHO group through the reduction of iron from its +3 state to +2 state, thus forming D-Arabinose.Hexoses converted to pentoses by Ruff degradationRuff degradation shortens an aldose chain by removing one carbon.