Explain the functioning of the all parts of the matter motor motor electric motor
Answers
Answered by
4
hey mate!!!!
Here is your answer....
Rotor:
In an electric motor, the moving part is the rotor, which turns the shaft to deliver the mechanical power. The rotor usually has conductors laid into it that carry currents, which interact with the magnetic field of the stator to generate the forces that turn the shaft. Alternatively, some rotors carry permanent magnets, and the stator holds the conductors.
Bearings:
The rotor is supported by bearings, which allow the rotor to turn on its axis. The bearings are in turn supported by the motor housing. The motor shaft extends through the bearings to the outside of the motor, where the load is applied. Because the forces of the load are exerted beyond the outermost bearing, the load is said to be overhung.
Stator :
The stator is the stationary part of the motor’s electromagnetic circuit and usually consists of either windings or permanent magnets. The stator core is made up of many thin metal sheets, called laminations. Laminations are used to reduce energy losses that would result if a solid core were used.
Air gap:
The distance between the rotor and stator is called the air gap. The air gap has important effects, and is generally as small as possible, as a large gap has a strong negative effect on performance. It is the main source of the low power factor at which motors operate. The magnetizing current increases with the air gap. For this reason, the air gap should be minimal. Very small gaps may pose mechanical problems in addition to noise and losses.
Windings:
Windings are wires that are laid in coils, usually wrapped around a laminated soft iron magnetic core so as to form magnetic poles when energized with current.
Electric machines come in two basic magnet field pole configurations: salient- and nonsalient-pole configurations. In the salient-pole machine the pole's magnetic field is produced by a winding wound around the pole below the pole face. In the nonsalient-pole, or distributed field, or round-rotor, machine, the winding is distributed in pole face slots.[60] A shaded-pole motor has a winding around part of the pole that delays the phase of the magnetic field for that pole.
Some motors have conductors that consist of thicker metal, such as bars or sheets of metal, usually copper, alternatively aluminum. These are usually powered by electromagnetic induction.
Commutator:
A commutator is a mechanism used to switch the input of most DC machines and certain AC machines. It consists of slip-ring segments insulated from each other and from the shaft. The motor's armature current is supplied through stationary brushes in contact with the revolving commutator, which causes required current reversal, and applies power to the machine in an optimal manner as the rotor rotates from pole to pole. In absence of such current reversal, the motor would brake to a stop. In light of improved technologies in the electronic-controller, sensorless-control, induction-motor, and permanent-magnet-motor fields, externally-commutated induction and permanent-magnet motors are displacing electromechanically-commutated motors.
hope it helps...
plz mark it as brainiest
.....
Here is your answer....
Rotor:
In an electric motor, the moving part is the rotor, which turns the shaft to deliver the mechanical power. The rotor usually has conductors laid into it that carry currents, which interact with the magnetic field of the stator to generate the forces that turn the shaft. Alternatively, some rotors carry permanent magnets, and the stator holds the conductors.
Bearings:
The rotor is supported by bearings, which allow the rotor to turn on its axis. The bearings are in turn supported by the motor housing. The motor shaft extends through the bearings to the outside of the motor, where the load is applied. Because the forces of the load are exerted beyond the outermost bearing, the load is said to be overhung.
Stator :
The stator is the stationary part of the motor’s electromagnetic circuit and usually consists of either windings or permanent magnets. The stator core is made up of many thin metal sheets, called laminations. Laminations are used to reduce energy losses that would result if a solid core were used.
Air gap:
The distance between the rotor and stator is called the air gap. The air gap has important effects, and is generally as small as possible, as a large gap has a strong negative effect on performance. It is the main source of the low power factor at which motors operate. The magnetizing current increases with the air gap. For this reason, the air gap should be minimal. Very small gaps may pose mechanical problems in addition to noise and losses.
Windings:
Windings are wires that are laid in coils, usually wrapped around a laminated soft iron magnetic core so as to form magnetic poles when energized with current.
Electric machines come in two basic magnet field pole configurations: salient- and nonsalient-pole configurations. In the salient-pole machine the pole's magnetic field is produced by a winding wound around the pole below the pole face. In the nonsalient-pole, or distributed field, or round-rotor, machine, the winding is distributed in pole face slots.[60] A shaded-pole motor has a winding around part of the pole that delays the phase of the magnetic field for that pole.
Some motors have conductors that consist of thicker metal, such as bars or sheets of metal, usually copper, alternatively aluminum. These are usually powered by electromagnetic induction.
Commutator:
A commutator is a mechanism used to switch the input of most DC machines and certain AC machines. It consists of slip-ring segments insulated from each other and from the shaft. The motor's armature current is supplied through stationary brushes in contact with the revolving commutator, which causes required current reversal, and applies power to the machine in an optimal manner as the rotor rotates from pole to pole. In absence of such current reversal, the motor would brake to a stop. In light of improved technologies in the electronic-controller, sensorless-control, induction-motor, and permanent-magnet-motor fields, externally-commutated induction and permanent-magnet motors are displacing electromechanically-commutated motors.
hope it helps...
plz mark it as brainiest
.....
Similar questions