Biology, asked by magimagi15651, 6 months ago

explain the mechanism of transportin of water in plant​

Answers

Answered by ashtekarnusrat198672
0

*****ANSWER*****

Mechanism Driving Water Movement in Plants

Unlike animals, plants lack a metabolically active pump like the heart to move fluid in their vascular system. Instead, water movement is passively driven by pressure and chemical potential gradients. The bulk of water absorbed and transported through plants is moved by negative pressure generated by the evaporation of water from the leaves (i.e., transpiration) — this process is commonly referred to as the Cohesion-Tension (C-T) mechanism. This system is able to function because water is "cohesive" — it sticks to itself through forces generated by hydrogen bonding. These hydrogen bonds allow water columns in the plant to sustain substantial tension (up to 30 MPa when water is contained in the minute capillaries found in plants), and helps explain how water can be transported to tree canopies 100 m above the soil surface. The tension part of the C-T mechanism is generated by transpiration. Evaporation inside the leaves occurs predominantly from damp cell wall surfaces surrounded by a network of air spaces. Menisci form at this air-water interface (Figure 4), where apoplastic water contained in the cell wall capillaries is exposed to the air of the sub-stomatal cavity. Driven by the sun's energy to break the hydrogen bonds between molecules, water evaporates from menisci, and the surface tension at this interface pulls water molecules to replace those lost to evaporation. This force is transmitted along the continuous water columns down to the roots, where it causes an influx of water from the soil. Scientists call the continuous water transport pathway the Soil Plant Atmosphere Continuum (SPAC).

Stephen Hales was the first to suggest that water flow in plants is governed by the C-T mechanism; in his 1727 book Hales states "for without perspiration the [water] must stagnate, notwithstanding the sap-vessels are so curiously adapted by their exceeding fineness, to raise [water] to great heights, in a reciprocal proportion to their very minute diameters." More recently, an evaporative flow system based on negative pressure has been reproduced in the lab for the first time by a ‘synthetic tree' (Wheeler & Stroock 2008).

When solute movement is restricted relative to the movement of water (i.e., across semipermeable cell membranes) water moves according to its chemical potential (i.e., the energy state of water) by osmosis — the diffusion of water. Osmosis plays a central role in the movement of water between cells and various compartments within plants. In the absence of transpiration, osmotic forces dominate the movement of water into roots. This manifests as root pressure and guttation — a process commonly seen in lawn grass, where water droplets form at leaf margins in the morning after conditions of low evaporation. Root pressure results when solutes accumulate to a greater concentration in root xylem than other root tissues. The resultant chemical potential gradient drives water influx across the root and into the xylem. No root pressure exists in rapidly transpiring plants, but it has been suggested that in some species root pressure can play a central role in the refilling of non-functional xylem conduits particularly after winter (see an alternative method of refilling described below).

hope it will help u..., ☺☺☺

please mark me as brainlisit......

Answered by pravinlearnercoin
0

First the root sucks the water from the soil and stem transports the water to Roots from top of the plant, The Stem uses capillary action to Transport the Water. The the water reaches the braches and it goes to Leaves and the Leaves Transport the water to every part of the leaves through the veins they have

For very clear understanding, See the image I have attached

Attachments:
Similar questions