Explain two situations when independent assortment of genes occurs resulting in 50 % recombination
Answers
The Principle of Independent Assortment describes how different genes independently separate from one another when reproductive cells develop. Independent assortment of genes and their corresponding traits was first observed by Gregor Mendel in 1865 during his studies of genetics in pea plants.
We now know that this independent assortment of genes occurs during meiosis in eukaryotes. Meiosis is a type of cell division that reduces the number of chromosomes in a parent cell by half to produce four reproductive cells called gametes. In humans, diploid cells contain 46 chromosomes, with 23 chromosomes inherited from the mother and a second similar set of 23 chromosomes inherited from the father. Pairs of similar chromosomes are called homologous chromosomes. During meiosis, the pairs of homologous chromosome are divided in half to form haploid cells, and this separation, or assortment, of homologous chromosomes is random. This means that all of the maternal chromosomes will not be separated into one cell, while the all paternal chromosomes are separated into another. Instead, after meiosis occurs, each haploid cell contains a mixture of genes from the organism's mother and father.
You can learn more about independent gene assortment on this FREE mobile application available on Google Play Store
https://play.google.com/store/apps/details?id=org.androidgeek.com.learnbiology