Math, asked by Anonymous, 10 months ago

Explanation:

<p style="color:cyan;font-family:cursive;background:black;font size:25px;"> SOLVE IT

 \bf  {x}^{2}  + 5x - 10 = 0

Answers

Answered by Anonymous
5

\huge\underline\bold\red{\mathfrak{Answer}}

For this equation: a=1, b=5, c=-10

1x²+5x-10=0

Use the Quadratic Formula with a=1, b=5, c=-10.

x =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac} }{2a}

x= \frac{ - (5) +  \sqrt{(5)^{2} } - 4(1)( - 10)}{2(1)}

x =  \frac{ - 5 +  \sqrt{65} }{2} \: or \: \frac{ - 5  -  \sqrt{65} }{2}

Hope it helps :)

#keep asking

Answered by Anonymous
2

Answer:

\boxed{\sf\ x \leadsto \frac{ - 5 +  \sqrt{ 65} }{2}   \: and \:  \frac{ - 5 -  \sqrt{  65} }{2}  }

Step-by-step explanation:

QUESTION➡x²-5x-10=0,

x=?

____,____,___,___,___

 \huge\mathbb{SOLUTION \mapsto} \\  \\  \sf\ using \: quadratic \: formula =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} \\  \\  \bf\  here  \sf\pink{ \:  \: a = 1 \:  \green{ \:  \: b =5 } \:  \:  \blue{c = -10}} \\  \\  \sf\ x \implies \frac{ - 5 \pm \sqrt{ {5}^{2}  - 4 \times 1 \times -10} }{2 \times 1} \\  \\ \sf\ x \implies  \frac{ - 5 \pm \sqrt{ 65} }{2} \\  \\  \boxed{\sf\ x \leadsto \frac{ - 5 +  \sqrt{ </p><p> 65} }{2}   \: and \:  \frac{ - 5 -  \sqrt{ 65} }{2}  }

Similar questions