Math, asked by sankarchowdarypbuby1, 1 year ago

exponential formula for integration

Answers

Answered by vrundadesai
0
Integrals of polynomialsEdit

{\displaystyle \int xe^{cx}\,dx=e^{cx}\left({\frac {cx-1}{c^{2}}}\right)}{\displaystyle \int x^{2}e^{cx}\,dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}{\displaystyle {\begin{aligned}\int x^{n}e^{cx}\,dx&={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\,dx\\&=\left({\frac {\partial }{\partial c}}\right)^{n}{\frac {e^{cx}}{c}}\\&=e^{cx}\sum _{i=0}^{n}(-1)^{i}{\frac {n!}{(n-i)!c^{i+1}}}x^{n-i}\\&=e^{cx}\sum _{i=0}^{n}(-1)^{n-i}{\frac {n!}{i!c^{n-i+1}}}x^{i}\end{aligned}}}{\displaystyle \int {\frac {e^{cx}}{x}}\,dx=\ln |x|+\sum _{n=1}^{\infty }{\frac {(cx)^{n}}{n\cdot n!}}}{\displaystyle \int {\frac {e^{cx}}{x^{n}}}\,dx={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,dx\right)\qquad {\text{(for }}n\neq 1{\text{)}}}

Integrals involving only exponential functionsEdit

{\displaystyle \int f'(x)e^{f(x)}\,dx=e^{f(x)}}{\displaystyle \int e^{cx}\,dx={\frac {1}{c}}e^{cx}}{\displaystyle \int a^{cx}\,dx={\frac {1}{c\cdot \ln a}}a^{cx}\qquad {\text{ for }}a>0,\ a\neq 1}

Integrals involving exponential and trigonometric functionsEdit

{\displaystyle {\begin{aligned}\int e^{cx}\sin bx\,dx&={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)\\&={\frac {e^{cx}}{\sqrt {c^{2}+b^{2}}}}\sin(bx-\phi )\qquad {\text{where }}\cos(\phi )={\frac {c}{\sqrt {c^{2}+b^{2}}}}\end{aligned}}}{\displaystyle {\begin{aligned}\int e^{cx}\cos bx\,dx&={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)\\&={\frac {e^{cx}}{\sqrt {c^{2}+b^{2}}}}\cos(bx-\phi )\qquad {\text{where }}\cos(\phi )={\frac {c}{\sqrt {c^{2}+b^{2}}}}\end{aligned}}}{\displaystyle \int e^{cx}\sin ^{n}x\,dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\,dx}{\displaystyle \int e^{cx}\cos ^{n}x\,dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\,dx}

Integrals involving the error functionEdit

In the following formulas, erf is the error function and Ei is the exponential integral.

{\displaystyle \int e^{cx}\ln x\,dx={\frac {1}{c}}\left(e^{cx}\ln |x|-\operatorname {Ei} (cx)\right)}
Answered by gdkedar1972
1

Answer:

Exponential growth :

Exponential growth is a pattern of data that shows greater increases with passing time, creating the curve of an exponential function.

Formula for Exponential growth :

\huge\boxed{{f(x) = a {(1 + r)}^{x}}}

f(x) = exponential growth function

a = initial amount

r = growth rate

x = number of time intervals

HOPE IT WILL HELP YOU ❤️❤️❤️

Similar questions