Math, asked by ÏnsÂnëYüvîBrø, 1 year ago

use completing of square method on it
1) 4x²+4√3x+3=0
2) 2x²+x-4=0

Answers

Answered by shivi1332
0
1
4x2+2√3x+2√3x+3
2x(2x+√3) √3(2x + √3)
(2x + √3) (2x + √3)
=0
Answered by sakshig
4
♤♤hey frnds.....

______________________________________⬇️⬇️⬇️⬇️

1) this solution is in this pic ⬆️⬆️⬆️.


2)
2x^{2}  + x - 4 = 0
 {x}^{2}  +  \frac{x}{2}  - \frac{4}{2}  = 0
 {x}^{2}  \times 2 \times x \times  \frac{1}{4}   +  \binom{1}{4}^{2}  -  \binom{1}{4}^{2}  + 2 = 0
 \binom{x + 1}{4}^{2}  =  \binom{1}{4}^{2}  + 2
 \binom{x + 1}{4}^{2}  =  \frac{1}{16}  + 2
 \binom{x + 1}{4}^{2}  =  \frac{x + 32}{16}
 \frac{x + 1}{4}  =  \sqrt{ \frac{33}{16} }
x +  \frac{1}{4}   =  +  -  \frac{ \sqrt{33} }{4}
Now , we use add (+) ...

x =  \frac{ - 1}{4}  +  \frac{ \sqrt{33} }{4}
x =  \frac{ - 1 +  \sqrt{33} }{4}
then , using subtract (-) ...

x =  \frac{ - 1}{4}  -  \frac{ \sqrt{33} }{4}
x =  \frac{ - 1 -  \sqrt{33} }{4}


Hence ans is :-
x =  \frac{ - 1 +  \sqrt{33} }{4} and \: x =  \frac{ - 1 -  \sqrt{33} }{4}



i \: hope \: its \: helpful
☺☺
Attachments:
Similar questions