Math, asked by chandnitekwani651, 3 months ago

exprees the standard form is 893.256​

Answers

Answered by raunakkumar27022007
4

Answer:

8000+900+30.2/10 5/100 6/1000

Answered by moongirl30
2

Answer:

By \:  completing  \: the \:  square, the \:  \\  standard \:  form  \: of  \: the \:  hyperbola \\  is:

 \frac{(x - 4) {}^{2} }{16}  - (y - 4) {}^{2}  = 1

with \:  vertices  \: at  \: (0,−4 )(0,−4)  \\  \: and \:  (8,−4)(8,−4).

The  \: ellipse \:  will  \: have  \: the  \: same  \\ center \:  as \:  the  \: hyperbola,  \\ (4,−4)(4,−4),

and \:  the \:  foci  \: are \:  at \:  the  \:  vertices  \:

of  \: the  \: hyperbola, (0,−4)(0,−4) \\  and (8,−4) \: so \:  we see \\  that c=4

These \:  foci  \: and  \: the \:  given  \: point \\  (8,−10)(8,−10) form  \: a  \: right \\ triangle  \: with \:  legs  \: of \:  length 88  \\  (between \:  the \:  foci) \:  and 66  \\ (from  \: the \:  right  \: focus \: to \: the \:  \\ given \: point), , and  \: a  \: hypotenuse \:  \\ of length 10.

For  \: an  \: ellipse,  \: the \:  distance  \:  \\ from  \: a  \: focus \:  to \:  a \: point \:  on \:  the \\  ellipse  \: is  \: 2a=6+10=16. \:  \\ Therefore, a=8 \: and \: b {}^{2}  = a {}^{2}   \\  -  \: c {}^{2} =  64 - 16 = 48

So, the  \: required  \: ellipse \:  is: \\   \frac{(x - 4) {}^{2} }{64}   +  \frac{(y + 4) {}^{2} }{48}  = 1

The \:  plot  \: looks \: like \:  this:

Similar questions