express 0.6+0.7+0.bar47 in the form of p/q where p and q are integers and q is not equal to 0
Answers
Answered by
3
☜☆☞hey friend!!!! ☜☆☞
here is your answer ☞
_______
Solution :-
Let x = 0.7Bar
⇒ x = 0.777.......... .........(1)
Multiplying (1) by 10
⇒ 10x = 7.7...... = 7.777 ...........(2)
Subtracting (1) from (2)
⇒ 10x - x = 9x
⇒ 7.777 - 0.777 = 7
⇒ 9x = 7
⇒ x = 7/9
Let y = 0.47Bar
⇒ y = 0.4747 .............. ........(1)
Multiplying (1) by 100
⇒ 100y = 47.4747 ............(2)
Subtracting (1) from (2)
⇒ 100y - y = 99y
⇒ 47.4747 - 0.4747 = 47
⇒ 99y = 47
⇒ y = 47/99
Now,
0.7Bar = 7/9
and 0.47Bar = 47/99
0.6 = 6/10
6/10 + 7/9 + 47/99
Taking L.C.M. of the denominator and then solving it, we get.
⇒ (594 + 770 + 470)/990
⇒ 1834/990
⇒ 917/495________answer
Hence, 0.6 + 0.7Bar + 0.47Bar = 917/495
I think my answer is capable to clear your confusion
Devil_king ▄︻̷̿┻̿═━一
here is your answer ☞
_______
Solution :-
Let x = 0.7Bar
⇒ x = 0.777.......... .........(1)
Multiplying (1) by 10
⇒ 10x = 7.7...... = 7.777 ...........(2)
Subtracting (1) from (2)
⇒ 10x - x = 9x
⇒ 7.777 - 0.777 = 7
⇒ 9x = 7
⇒ x = 7/9
Let y = 0.47Bar
⇒ y = 0.4747 .............. ........(1)
Multiplying (1) by 100
⇒ 100y = 47.4747 ............(2)
Subtracting (1) from (2)
⇒ 100y - y = 99y
⇒ 47.4747 - 0.4747 = 47
⇒ 99y = 47
⇒ y = 47/99
Now,
0.7Bar = 7/9
and 0.47Bar = 47/99
0.6 = 6/10
6/10 + 7/9 + 47/99
Taking L.C.M. of the denominator and then solving it, we get.
⇒ (594 + 770 + 470)/990
⇒ 1834/990
⇒ 917/495________answer
Hence, 0.6 + 0.7Bar + 0.47Bar = 917/495
I think my answer is capable to clear your confusion
Devil_king ▄︻̷̿┻̿═━一
Deepsbhargav:
if you satisfied to my answer plz it's Mark as brainliest
Answered by
0
Answer:
(≡^∇^≡) ____________
Similar questions