Math, asked by karthikkarthika325, 4 months ago

express 2-3i/1+7i in the form a+ib​

Answers

Answered by TheAster
4

\mathcal{ \huge \:  \underline{ \underline{Question  }}\: : } \\

 \\  \tt \: Express \:  \:  \tt \frac{2 - 3i}{1 + 7i} \:  \: in \: \:  the \:  \: form \:  \: a + ib. \\

\\  \bf{ \huge \:  \underline{ \underline{Answer}}\: : } \\

 \tt \frac{2 - 3i}{1 + 7i}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \tt  =  \frac{2 - 3i}{1 + 7i}   \times \frac{(1 - 7i)}{(1 - 7i)}   \:  \:  \:  \:  \:  \:  \\  \\ \tt  =  \frac{2 - 14i - 3i + 21  \: {i}^{2} }{ {1}^{2} -  {(7i)}^{2}  }  \\  \\  \tt  = \frac{2 - 17i + 21( - 1)}{1 - 49( {i}^{2}) }  \:  \:  \:  \:  \:  \:  \\  \\  \tt =  \frac{2 - 17i - 21}{1 - 49( - 1)}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \tt  =  \frac{ - 19 - 17i}{1 + 49} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\   \tt = \frac{ - 19 - 17i}{50}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \tt   \underline{ \underline{ = \frac{ - 19}{ \:  \:  \: 50}  -  i\frac{17}{50}  \:  \:  \: }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

 \\  \boxed{ \tt \: where \:  \: a =  \frac{ - 19}{ \:  \:  \: 50}  \:  \: and \:  \: b =  \frac{ - 17}{ \:  \:  \: 50} . }\\

 \\  \\  \bf \: Hope~~ this ~~helps~~ you~ !

Answered by sandy1816
1

 \frac{2 - 3i}{1 + 7i}  \\  \\  =  \frac{2  -  3i}{1 + 7i}  \times  \frac{1  - 7i}{1 - 7i}  \\  \\  =  \frac{2 - 14i - 3i + 21 {i}^{2} }{1 - 49 {i}^{2} }  \\  \\  =  \frac{2 - 21 - 17i}{50}  \\  \\  =  \frac{ - 19 - 17i}{50}  \\  \\  =  -  \frac{19}{50}  - i \frac{17}{50}

Similar questions