Math, asked by hivemindgaming, 1 year ago

Express 3/√3-√2+√5 with rational denominator

Answers

Answered by Aru4Mohu
80

Solution :-

We have ,

  =  > \frac{3}{( \sqrt{3} -  \sqrt{2}) +  \sqrt{5}   }

Multiplying both numerator and denominator with same values , we get ;-

 =  > \frac{3}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }  \times  \frac{( \sqrt{3} -  \sqrt{2}) +  \sqrt{5}   }{( \sqrt{3}  -  \sqrt{2) +  \sqrt{5} } }

 =  >  \frac{3( \sqrt{3} -  \sqrt{2}  -  \sqrt{5} ) }{( \sqrt{3}  -  \sqrt{2}) ^{2}   - ( \sqrt{5})^{2}  }

 =  >  \frac{3( \sqrt{3} -  \sqrt{2} -  \sqrt{5} )  }{(( \sqrt{3})^{2}  + ( \sqrt{2})^{2}  - 2 \times  \sqrt{3} \times  \sqrt{2} ) - 5 }

 =  >  \frac{3( \sqrt{3 }  -  \sqrt{2}  -\sqrt{5)} }{(3 + 2 - 2 \sqrt{6}) - 5 }

 =  >  \frac{3( \sqrt{3}  -  \sqrt{2}  -  \sqrt{5}) }{ - 2 \sqrt{6} }  \times  \frac{ \sqrt{6} }{ \sqrt{6} }

 =  >  \frac{3( \sqrt{18} -  \sqrt{12}   -  \sqrt{30}) }{ - 2 \times 6}

 =  >  \frac{3 \sqrt{2}  - 2 \sqrt{3}  -  \sqrt{30} }{ - 4}

 =  >  \frac{2 \sqrt{3}  +  \sqrt{30}  - 3 \sqrt{2} }{4}

 =  >  \frac{3(3 \sqrt{2}  - 2 \sqrt{3}  - \sqrt{30}) }{ - 12}

Hence , Answer is :-

 =  >  \frac{3(3 \sqrt{2}  - 2 \sqrt{3}  - \sqrt{30}) }{ - 12}

Answered by kjuli1766
1

Concept

In elementary algebra, root rationalisation is a process by which radicals in the denominator of an algebraic fraction are eliminated.

Given

3/(√3-√2+√5)

Find

Express 3/(√3-√2+√5) with rational denominator

Solution

We are given  3/(√3-√2+√5)

Rationalising

Multiplying Numerator and denominator with ((√3-√2) - √5)

We get

= 3 * ((√3-√2) - √5)   /   ((√3-√2)+√5) * ((√3-√2) - √5)

= 3((√3-√2) - √5)   /   (√3-√2)² - (√5)²

= 3((√3-√2) - √5)   / ( 3 + 2 - 2√6) - 5

= 3((√3-√2) - √5)   / (-2√6)

Again Rationalising to remove √6

Multiplying Numerator and Denominator with √6

= 3((√3-√2) - √5)  * √6   /   (-2√6) * √6

= 3(√18 - √12 - √30)  / (-12)  

= (√18 - √12 - √30) / (-4)

= (-) (√30 +  √12 - √18) / (-) 4

= (√30 +  √12 - √18) / 4

= 1/4 ( √30  + 2√3 - 3√2)

After rationalising  3/(√3-√2+√5)  =  1/4 ( √30  + 2√3 - 3√2)

#SPJ2

Similar questions