Express 3/√3-√2+√5 with rational denominator
Answers
Solution :-
We have ,
Multiplying both numerator and denominator with same values , we get ;-
Hence , Answer is :-
Concept
In elementary algebra, root rationalisation is a process by which radicals in the denominator of an algebraic fraction are eliminated.
Given
3/(√3-√2+√5)
Find
Express 3/(√3-√2+√5) with rational denominator
Solution
We are given 3/(√3-√2+√5)
Rationalising
Multiplying Numerator and denominator with ((√3-√2) - √5)
We get
= 3 * ((√3-√2) - √5) / ((√3-√2)+√5) * ((√3-√2) - √5)
= 3((√3-√2) - √5) / (√3-√2)² - (√5)²
= 3((√3-√2) - √5) / ( 3 + 2 - 2√6) - 5
= 3((√3-√2) - √5) / (-2√6)
Again Rationalising to remove √6
Multiplying Numerator and Denominator with √6
= 3((√3-√2) - √5) * √6 / (-2√6) * √6
= 3(√18 - √12 - √30) / (-12)
= (√18 - √12 - √30) / (-4)
= (-) (√30 + √12 - √18) / (-) 4
= (√30 + √12 - √18) / 4
= 1/4 ( √30 + 2√3 - 3√2)
After rationalising 3/(√3-√2+√5) = 1/4 ( √30 + 2√3 - 3√2)
#SPJ2