Math, asked by clashofserver8823, 1 month ago

Express as single logarithm 5 log 25/24 - 3 log 80/81 - 7 log 15/10​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:5log\bigg(\dfrac{25}{24} \bigg) - 3log\bigg(\dfrac{80}{81} \bigg) - 7log\bigg(\dfrac{15}{10} \bigg)

can be rewritten as

\rm :\longmapsto\:5log\bigg(\dfrac{25}{24} \bigg) - 3log\bigg(\dfrac{80}{81} \bigg) - 7log\bigg(\dfrac{3}{2} \bigg)

We know,

 \boxed{ \bf{ \: ylogx =  log( {x}^{y} )}}

So, using this identity we get,

\rm \:  =  \:  \:  {log\bigg(\dfrac{25}{24} \bigg)}^{5} + {log\bigg(\dfrac{80}{81} \bigg)}^{ - 3}  + {log\bigg(\dfrac{3}{2} \bigg)}^{ - 7}

\rm \:  =  \:  \:  {log\bigg(\dfrac{25}{24} \bigg)}^{5} + {log\bigg(\dfrac{81}{80} \bigg)}^{3}  + {log\bigg(\dfrac{2}{3} \bigg)}^{ 7}

We know,

 \boxed{ \bf{ \: logx + logy = logxy}}

\rm \:  =  \:  \: log \bigg \{ {\bigg(\dfrac{25}{24} \bigg)}^{5} \times  {\bigg(\dfrac{81}{80} \bigg)}^{3}  \times  {\bigg(\dfrac{2}{3} \bigg)}^{7} \bigg \}

\rm \:  =  \:  \: log \bigg \{ {\bigg(\dfrac{ {5}^{2} }{ {2}^{3}  \times 3} \bigg)}^{5} \times  {\bigg(\dfrac{ {3}^{4} }{ {2}^{4}  \times 5} \bigg)}^{3}  \times  {\bigg(\dfrac{2}{3} \bigg)}^{7} \bigg \}

\rm \:  =  \:  \: log \bigg \{ {\bigg(\dfrac{ {5}^{10} }{ {2}^{15}  \times  {3}^{5} } \bigg)}^{} \times  {\bigg(\dfrac{ {3}^{12} }{ {2}^{12}  \times  {5}^{3} } \bigg)}^{}  \times  {\bigg(\dfrac{ {2}^{7} }{ {3}^{7} } \bigg)}^{} \bigg \}

\rm \:  =  \:  \: log \bigg \{ {\bigg(\dfrac{ {5}^{7} }{ {2}^{20}  } \bigg)}^{}  \bigg \}

Additional Information :-

 \boxed{ \bf{ \: log(x \div y) = logx - logy}}

 \boxed{ \bf{ \:  log_{x}(x) = 1}}

 \boxed{ \bf{ \:  log_{ {x}^{y} }( {x}^{z} ) =   \frac{z}{y}  }}

 \boxed{ \bf{ \:  {e}^{logx} = x}}

 \boxed{ \bf{ \:  {e}^{ylogx} =  {x}^{y} }}

 \boxed{ \bf{ \:  {a}^{ log_{a}(x) }  = x}}

Similar questions