Math, asked by PragyaTbia, 1 year ago

Express cos⁶ A + sin⁶ A in terms of sin 2A.

Answers

Answered by abhi178
4
cos⁶ A + sin⁶ A

= (cos²A)³ + (sin²A)³

use algebraic formula, a³ + b³ = (a + b)(a² + b² - ab)

so, (cos²A)³ + (sin²A)³ = (cos²A + sin²A){(cos²A)² + (sin²A)² - cos²A. sin²A}

we know, from trigonometric identities,
sin²A + cos²A = 1

(cos²A + sin²A){(cos²A)² + (sin²A)² - cos²A. sin²A} = {cos⁴A + sin⁴A - cos²A.sin²A}

= {(cos²A + sin²A)² - 2sin²A. cos²A - cos²A. sin²A}

= {1² - 3sin²A. cos²A}

= {1 - 3/4 (2sinA. cosA)²}

we know, sin2x = 2sinx.cosx
so, sin2A = 2sinA. cosA

= {1 - 3/4(sin2A)²}

= (4 - 3sin²2A)/4

hence, required answer is (4 - 3sin²2A)/4
Answered by rohitkumargupta
5
HELLO DEAR,



cos⁶ A + sin⁶ A

=> (cos²A)³ + (sin²A)³

using, a³ + b³ = (a + b)(a² + b² - ab)

so, (cos²A)³ + (sin²A)³ = (cos²A + sin²A){(cos²A)² + (sin²A)² - cos²A. sin²A}



[as, sin²A + cos²A = 1 ]

(cos²A + sin²A){(cos²A)² + (sin²A)² - cos²A. sin²A} = {cos⁴A + sin⁴A - cos²A.sin²A}

=> {(cos²A + sin²A)² - 2sin²A. cos²A - cos²A. sin²A}

=> {1² - 3sin²A. cos²A}

=> {1 - 3/4 (2sinA. cosA)²}

we know, sin2x = 2sinx.cosx
so, sin2A = 2sinA. cosA

=> {1 - 3/4(sin2A)²}

=> (4 - 3sin²2A)/4



I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions