Math, asked by kumarrohit73750, 1 month ago

Express (Cosx + i sinx / sin x + i cos x) in the form of Cos A + i sin A.

Answers

Answered by abhi569
4

Answer:

Step-by-step explanation:

\implies \sf{\dfrac{cosx + isinx}{sinx+icosx}}\\\\\\\implies\sf{\dfrac{cosx+isinx}{sinx+icosx}\times \dfrac{sinx - icosx}{sinx - icosx}}\\\\\\\implies \sf{\dfrac{(cosx + isinx)(sinx-icosx)}{(sinx + icosx)(sinx -icosx)} }\\\\\\\implies \sf{\dfrac{cosx.sinx - icos^2x + isin^2x - i^2 sinx.cosx}{sin^2x - i^2.cos^2x }}\\\\\\\implies \sf{\dfrac{cosx.sinx + i(sin^2x - cos^2x) +sinx.cosx}{sinx^2x + cos^2x}}\\\\\\\implies \sf{\dfrac{2sinx.cosx + i(cos2x)}{1}}\\\\\implies \sf{sin2x + icos2x}

\implies \sf{cos(\frac{\pi}{2}-2x) + isin(\frac{\pi}{2} - 2x)}

Answered by jaswasri2006
6

For further Explanation

 \boxed{ \red{ \sf \lgroup{ \orange{ \: Refer  \:  \: the  \:  \: above  \:  \:  \:  attachment   \: }\rgroup}}}

Attachments:
Similar questions