Math, asked by younasrasiya, 4 months ago

express in a+ib form of (3-i) ^4​

Answers

Answered by Anonymous
5

Explanation :

 \tt  \red\star \:  \: (3 - i) {}^{4}

Applying binomial theorem,

  \boxed{ \tt \: (a + b) {}^{n}  = \tt\sum\limits_{i = 0}^{n} \bigg( \cfrac{n}{i}  \bigg)a {}^{(n - i)} b {}^{i}}  \:  \:  \green \star

Where,

  • a = 3

  • b = -i

Substitute all values in above formula,

\to \tt \:  \sum\limits_{i = 0}^{4} \bigg(  \cfrac{4}{i} \bigg) \times 3 {}^{(4 - i)} ( - i) {}^{i}  \\  \\ \\ \to \tt \:  \cfrac{4!}{0!(4 - 0)!}  \times 3 {}^{4 } ( - i) {}^{0}  + \cfrac{4!}{1!(4 - 1)!}  \times 3 {}^{3} ( - i) {}^{1}  +  \cfrac{4!}{2!(4 - 2)! } 3 {}^{2} ( - i) {}^{3}  + \cfrac{4!}{3!(4 - 3)! } 3 {}^{1} ( - i) {}^{3}  + \cfrac{4!}{4!(4 - 4)! } 3 {}^{0} ( - i) {}^{4}  \\  \\ \\ \to \tt  \:81  - 108i - 54 + 12i + 1 \\  \\ \\  \to \boxed{\tt \: 28 - 96i \: }\blue \star

Similar questions