Math, asked by gaaaakvf, 5 months ago

Express in the form of a + ib ​

Attachments:

Anonymous: nyc Question

Answers

Answered by Anonymous
20

Given -

\bf\longrightarrow{\bigg[ \bigg( \dfrac{1}{3} + i\dfrac{7}{3} \bigg) + \bigg( 4 + i\dfrac{1}{3} \bigg) \bigg] - \bigg( - \dfrac{4}{3} + i \bigg)}

Solution -

\rm\implies{\bigg[ \bigg( \dfrac{1}{3} + i\dfrac{7}{3} \bigg) + \bigg( 4 + i\dfrac{1}{3} \bigg) \bigg] - \bigg( - \dfrac{4}{3} + i \bigg)}

\rm\implies{\bigg[ \bigg( \dfrac{1 + i7}{3} \bigg) + \bigg( \dfrac{12 + i1}{3}  \bigg) \bigg] - \bigg( \dfrac{-4 + i3}{3} \bigg)}

\rm\implies{\bigg[ \dfrac{1 + i7 + 12 + i1}{3} \bigg] - \bigg( \dfrac{-4 + i3}{3} \bigg)}

\rm\implies{\bigg[ \dfrac{13 + i8}{3} \bigg] + \bigg( \dfrac{4 - i3}{3} \bigg)}

\rm\implies{\dfrac{13 + i8 + 4 - i3}{3}}

\rm\implies{\dfrac{17 + i5}{3}}

In the form of a + ib

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {\dfrac{17}{3} + i\dfrac{5}{3}}


gaaaakvf: thank you
Anonymous: Superb Excellent ✌
Anonymous: Amazing
Rubellite: Astounding! :D
Similar questions