Math, asked by shaijastanly, 1 year ago

Express in the form of a+ib in 5-√3i÷4+2√3i

Answers

Answered by meenug1974pb4csn
38

5-√3i÷4+2√3i
={(5-√3i)/(4+2√3i)} X{ (4-2√3i)/(4-2√3i)}
={(5-√3i)(4-2√3i)}/( 16 + 12 )
= (20 - 10√3i -4√3i +6i^2)/28
= (14 - 14√3i )/28
= 1/2 - √3/2i

Answered by payalchatterje
5

Answer:

Required answer is ( \frac{1}{2}   -  \frac{ \sqrt{3} }{2} i)

Step-by-step explanation:

Here given,

 \frac{5 -  \sqrt{3}i }{4 + 2 \sqrt{3} i}

We want to convert it into a+ib form.Where a is real part and b is imaginary part.

Now,in given fraction denominator is( 4 + 2 \sqrt{3} i)and numerator is ( 5 -  \sqrt{3} i)

We are multiplying denominator and numerator by (4  - 2 \sqrt{3} i)and get,

 \frac{(5 -  \sqrt{3}i )(4  -  2 \sqrt{3} i)}{(4 + 2 \sqrt{3} i)(4  - 2 \sqrt{3} i)}

 =  \frac{20 - 10 \sqrt{3}i - 4 \sqrt{3}i + 6 {i}^{2}   }{ {4}^{2} -  {(2 \sqrt{3} i)}^{2}  }  =  \frac{20 - 14 \sqrt{3} i - 6}{16  + 12}  =  \frac{14 - 14 \sqrt{3} i}{28}  =   \frac{14}{28}  -  \frac{14 \sqrt{3} i}{28}  =  \frac{1}{2}  -  \frac{ \sqrt{3} }{2} i

So,we are comparing (\frac{1}{2}  -  \frac{ \sqrt{3} }{2} i) with( a + bi) and get a =  \frac{1}{2} and

b =  -  \frac{ \sqrt{3} }{2}

Here applied formula is  {i}^{2}  =  - 1

Similar questions