express root of 1-sina/1+sina as seca-tana
Answers
Answered by
4
LHS=under root 1-sin titha/1+sin titha
multiply by (1-sin titha) to both numerator and denominator.
= under root (1-sin titha)×(1-sin titha) / (1+sin titha)×(1-sin titha)
= under root (1-sin titha)^2 /(1^2-sin^2 titha)
=(1- sin titha) / root cos^2 titha
=1-sin titha/cos titha
=1/cos titha -sin titha/cos titha
LHS=sec titha-tan titha
therefore LHS=RHS
multiply by (1-sin titha) to both numerator and denominator.
= under root (1-sin titha)×(1-sin titha) / (1+sin titha)×(1-sin titha)
= under root (1-sin titha)^2 /(1^2-sin^2 titha)
=(1- sin titha) / root cos^2 titha
=1-sin titha/cos titha
=1/cos titha -sin titha/cos titha
LHS=sec titha-tan titha
therefore LHS=RHS
Similar questions
Hindi,
7 months ago
Hindi,
7 months ago
English,
1 year ago
Math,
1 year ago
India Languages,
1 year ago