Express Sin A in terms of other trigonometric ratios
Answers
Answered by
0
Answer:
Step-by-step explanation:
There you go :-
Cos a = square root of (1-square of sin a)
tan = sina/cosa = sin a/(square root of (1-square of sina))
Cosec a= 1/sin a
Sec a = 1/cos a= 1/(square root of (1-square of sin a))
Cot a = cos a/sina = (square root of (1-square of sin a))/sin a
Hope it will help you :-) :-)
Answered by
7
Step-by-step explanation:
Given that:- Sin A
1) Cosec A =1/SinA
=>SinA= 1/ Cosec A
2) we know that Sin² A + Cos ² A=1
=>Sin² A=1- Cos² A
=>Sin A= √(1-Cos²A)
3)We know that Cosec² A- Cot² A=1
=>Cosec²A=1+Cot² A
=>Cosec A=√(1+Cot²A)
=>1/Sin A=√(1+Cot²A)
=>Sin A=1/√(1+Cot²A)
4)Sin A =1/√(1+1/tan²A)
=>Sin A= 1/√[(tan²+1)/tan²A]
=>Sin A = √[(tan²A/(tan²+1)]
=>Sin A=tan A/(√tan²A+1)
5)sinA = √(1-Cos² A)
=>Sin A=√[(1-(1/sec² A)]
=>Sin A= √[(Sec² A-1)/Sec² A]
=>Sin A = √(Sec² A-1)/sec A
Similar questions