express sinA in terms of cotA
Answers
Answered by
17
cosec²x - cot²x = 1
cosec²x = 1 + cot²x
1/sin²x = 1 + cot²x
= > sin²x = 1/1+cot²x
Therefore ,
sinx = √1/1+cot²x
cosec²x = 1 + cot²x
1/sin²x = 1 + cot²x
= > sin²x = 1/1+cot²x
Therefore ,
sinx = √1/1+cot²x
dorasai:
sinX=cos(90-X)
Answered by
11
1/sin²A=cosec²
cosec²A - cot²A = 1
(putting the value of cosec²A)
1/sin²A - cot²A = 1
1/sin²A = 1 + cot²A
sin²A = 1/1 + cot²A
sinA = √1/1 + cot²A
cosec²A - cot²A = 1
(putting the value of cosec²A)
1/sin²A - cot²A = 1
1/sin²A = 1 + cot²A
sin²A = 1/1 + cot²A
sinA = √1/1 + cot²A
Similar questions
Social Sciences,
8 months ago
Physics,
8 months ago
Environmental Sciences,
1 year ago
Social Sciences,
1 year ago