Express in terms of cos³ θ and cos θ.
Answers
Answered by
2
we have to express sin4θ/sinθ in term of cos³θ and cosθ
we know, sin2x = 2sinx.cosx
so, sin4θ = 2sin2θ cos2θ
= 2(2sinθ cosθ)cos2θ
= 4sinθ cosθ cos2θ
now, sin4θ/sinθ = 4sinθ cosθ cos2θ/sinθ
= 4cosθ cos2θ
we also know, cos2x = 1 - 2cos²x
so, cos2θ = 1 - 2cos²θ
now, 4cosθ cos2θ = 4cosθ(1 - 2cos²θ)
= 4cosθ - 8cos³θ
hence, sin4θ/sinθ will be 4cosθ - 8cos³θ in term of cos³ θ and cos θ.
we know, sin2x = 2sinx.cosx
so, sin4θ = 2sin2θ cos2θ
= 2(2sinθ cosθ)cos2θ
= 4sinθ cosθ cos2θ
now, sin4θ/sinθ = 4sinθ cosθ cos2θ/sinθ
= 4cosθ cos2θ
we also know, cos2x = 1 - 2cos²x
so, cos2θ = 1 - 2cos²θ
now, 4cosθ cos2θ = 4cosθ(1 - 2cos²θ)
= 4cosθ - 8cos³θ
hence, sin4θ/sinθ will be 4cosθ - 8cos³θ in term of cos³ θ and cos θ.
Answered by
2
HELLO DEAR,
we know:-
sin2x = 2sinx.cosx
then, sin4θ = 2sin2θ cos2θ
=> 2(2sinθ cosθ)cos2θ
=> 4sinθ cosθ cos2θ
now,
sin4θ/sinθ = 4sinθ cosθ cos2θ/sinθ
=> 4cosθ cos2θ
[as, cos2x = 1 - 2cos²x ]
so, cos2θ = 1 - 2cos²θ
now, 4cosθ cos2θ = 4cosθ(1 - 2cos²θ)
= 4cosθ - 8cos³θ
I HOPE IT'S HELP YOU DEAR,
THANKS
we know:-
sin2x = 2sinx.cosx
then, sin4θ = 2sin2θ cos2θ
=> 2(2sinθ cosθ)cos2θ
=> 4sinθ cosθ cos2θ
now,
sin4θ/sinθ = 4sinθ cosθ cos2θ/sinθ
=> 4cosθ cos2θ
[as, cos2x = 1 - 2cos²x ]
so, cos2θ = 1 - 2cos²θ
now, 4cosθ cos2θ = 4cosθ(1 - 2cos²θ)
= 4cosθ - 8cos³θ
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions
English,
6 months ago
Social Sciences,
6 months ago
Computer Science,
6 months ago
Computer Science,
1 year ago