Math, asked by 401906, 8 months ago

Express the answer in interval notation..

mc002-1.jpg

[–9, –5]

(–9, 5)

mc002-2.jpg

Answers

Answered by amitnrw
5

Given : 2|x + 7|−4 ≥ 0

To Find : Express the answer in interval notation.

Solution:

2|x + 7| − 4  ≥  0

| x |  = x  if x ≥ 0

      = - x if  x < 0

|x + 7|  = (x + 7)   if   x + 7 ≥ 0 => x ≥ -7

2(x + 7) - 4 ≥  0

=> 2x + 14 - 4  ≥  0

=> 2x + 10  ≥  0

=> 2x  ≥  -10

=> x   ≥  -5

   x ≥ -7

Hence  x   ≥  -5

|x + 7|  = -(x + 7)   if   x + 7 <  0 => x <  -7

2{-(x + 7)} - 4 ≥  0

=> -2x - 14 - 4  ≥  0

=> -2x -18  ≥  0

=> -18  ≥  2x

=> -9   ≥  x

=> x ≤ - 9

x <  -7

Hence  x ≤ - 9

x ≤ - 9 and  x   ≥  -5

x ∈  (-∞ , - 9] ∪ [-5 , ∞)

x ∈ R - (-9 , - 5)

Learn More:

Solve the inequality |X

brainly.in/question/12424683

Solve the following inequality : [tex]displaystyle{dfrac{1-sqrt{21-4x ...

brainly.in/question/12643551

Solve the following system of inequalities graphically 5x+4y≤40,x ...

brainly.in/question/15279588

Answered by jordans22807
17

Answer:

a

Step-by-step explanation:

Similar questions