Express the following complex number in polar form 1/1+i
Answers
Answered by
4
Answer:
1/√2 {(cos3π/4+i sin3π/4)}
Step-by-step explanation:
1/1+i = 1-i/(1+i)(1-i) = (1-i)/(1-i²) = (1-i)/(1+1) = (1-i)/2 = 1/2 - i/2
∴ r = √{(1/2)²+(-1/2)²} = √2/4 = 1/√2
∴ Ф = tan^(-1) {(-1/2)/(1/2)}
= tan^(-1) (-1)
= 3π/4
Hence, the polar form is = r(cosФ+i sin Ф)
= 1/√2 {(cos3π/4+i sin3π/4)}
Similar questions