Math, asked by mkhatun12, 4 months ago

Express the following numbers in the form A+iB : ​

Attachments:

Answers

Answered by suhail2070
1

Answer:

 -  \frac{a}{2} ( - 1 + i \cot( \frac{ \alpha }{2} ))

Step-by-step explanation:

 \frac{a}{1 -  \cos( \alpha ) - i \sin( \alpha )  }  =  \frac{a}{2 { \sin(  \frac{ \alpha }{2}  ) }^{2}  - 2i \sin(  \frac{ \alpha }{2} ) \cos( \frac{ \alpha }{2} ) ) }  \\  \\  =  \frac{a}{2 \sin( \frac{ \alpha }{2} )( \sin( \frac{ \alpha }{2} )  - i \cos( \frac{ \alpha }{2} ) ) }  \\  \\  =  \frac{a}{2i \sin( \frac{ \alpha }{2} )(  \cos( \frac{ \alpha }{2} )  - i \sin( \frac{ \alpha }{2} ) )  }  \\  \\  =   \frac{ - ai( \cos( \frac{ \alpha }{2} )  + i \sin( \frac{ \alpha }{2} ) )}{2 \sin( \frac{ \alpha }{2} )}  \\  \\  =  -  \frac{ai}{2}  \frac{( \cot( \frac{ \alpha }{2} ) + i )}{1}  \\  \\  =  -  \frac{a}{2} ( - 1 + i \cot( \frac{ \alpha }{2} ))

Similar questions