Math, asked by tnemade87, 5 months ago

express the following on the form of a+ib a,b€Ri find value of a and b
 \binom{1 + i}{1 - i {}^{} }  {}^{2}

Answers

Answered by mathdude500
4

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

To find the value of

\large\bold\red{ {( \frac{1 + i}{1 - i}) }^{2} }

♡ Formula used

◇ i² = - 1

Solution :-

 {( \frac{1 + i}{1 - i}) }^{2} \\  =  {( \frac{1 + i}{1 - i} \times  \frac{1 + i}{1 + i}  )}^{2} \\  =  { (\frac{ {(1 + i)}^{2} }{ {1}^{2}  -  {i}^{2} }) }^{2}   \\  =  { (\frac{ {1}^{2}  +  { i}^{2} + 2i }{1 - ( - 1)}) }^{2}  \\  =  {( \frac{1 - 1 + 2i}{1 + 1}) }^{2}  \\  =  {( \frac{2i}{2} )}^{2}  \\  =  {i}^{2}  \\  =  - 1 \\  =  - 1 + 0i \\ so \: on \: comparing \: with \:  a + ib \\ we \: get \: a =  - 1 \: and \: b = 0

\huge \fcolorbox{black}{cyan}{♛Hope it helps U♛} \\ \boxed{ \large{ \mathfrak{Mark \:  me \:  as  \: Brainliest}}}

Answered by suman8615
0

Answer:

this is correct.............................

Attachments:
Similar questions