Express the GCD of 48 and 18 as a linear combination.
Answers
Answered by
8
A=bq+r, where o ≤ r < b
48=18x2+12
18=12x1+6
12=6x2+0 ∴ HCF (18,48) = 6 now 6= 18-12x1
6= 18-(48-18x2)
6= 18-48x1+18x2
6= 18x3-48x1 6= 18x3+48x(-1)
i.e. 6= 18x +48y
∴
6= 18×3 +48×(-1)
=18×3 +48×(-1) + 18×48-18×48
=18(3+48)+48(-1-18)
=18×51+48×(-19)
6=18x+48y
∴
Hence, x and y are not unique.
48=18x2+12
18=12x1+6
12=6x2+0 ∴ HCF (18,48) = 6 now 6= 18-12x1
6= 18-(48-18x2)
6= 18-48x1+18x2
6= 18x3-48x1 6= 18x3+48x(-1)
i.e. 6= 18x +48y
∴
6= 18×3 +48×(-1)
=18×3 +48×(-1) + 18×48-18×48
=18(3+48)+48(-1-18)
=18×51+48×(-19)
6=18x+48y
∴
Hence, x and y are not unique.
Answered by
11
a = bq + r
HCF (18 , 48) = 6
Here x = 3 and y = -1
Here we have x = 51 and y = -19
Therefore x and y are not unique
Similar questions