Math, asked by Graisonsajiy6903, 1 year ago

Express the (-i)(-1/8i)3(2i) in the form of a+ib


Anonymous: ___k off

Answers

Answered by adi10305
1

the ans to the ques is 0 - 3/4i

Attachments:
Answered by pinquancaro
3

The required form is (-i)(-\frac{1}{8}i)^3(2i)=0+\frac{1}{256}i.

Step-by-step explanation:

Given : Expression (-i)(-\frac{1}{8i})^3(2i)

To find : Express the expression in the form of a+ib ?

Solution :

Solving the expression by multiplying the terms,

Expression (-i)(-\frac{1}{8i})^3(2i)

(-i)(-\frac{1}{8}i)^3(2i)=(-2i^2)(-\frac{i^3}{8^3})

We know that, i^2=-1

(-i)(-\frac{1}{8}i)^3(2i)=(-2(-1))(-\frac{(-1)i}{512})

(-i)(-\frac{1}{8}i)^3(2i)=(2)(\frac{i}{512})

(-i)(-\frac{1}{8}i)^3(2i)=\frac{i}{256}

Now, in form of a+ib

(-i)(-\frac{1}{8}i)^3(2i)=0+\frac{1}{256}i

Here, a=0 and b=\frac{1}{256}

#Learn more

Express (-51)(1/8i) in x+iy form​

https://brainly.in/question/10427207

Similar questions