Math, asked by kiranrajputk923, 10 days ago

Express the matrix A as the sum of a symmetric and skew symmetric matrix where A=[4 5 6,/-1 0 1,/ 2 1 2]​

Answers

Answered by DeeznutzUwU
1

       \underline{\bold{Solution:}}

       \text{The given matrix is }A = \left[\begin{array}{ccc}4&5&6\\-1&0&1\\2&1&2\end{array}\right]

\implies A^{T} = \left[\begin{array}{ccc}4&-1&2\\5&0&1\\6&1&2\end{array}\right]

       \text{Adding }A \text{ and }A^{T}

\implies A + A^{T} = \left[\begin{array}{ccc}4&5&6\\-1&0&1\\2&1&2\end{array}\right]+\left[\begin{array}{ccc}4&-1&2\\5&0&1\\6&1&2\end{array}\right]

\implies A + A^{T} = \left[\begin{array}{ccc}8&4&8\\4&0&2\\8&2&4\end{array}\right]

       \text{Multiplying }\dfrac12 \text{ on both sides}

\implies \dfrac12(A + A^{T}) = \dfrac12\left[\begin{array}{ccc}8&4&8\\4&0&2\\8&2&4\end{array}\right]

\implies \dfrac12(A + A^{T}) = \left[\begin{array}{ccc}4&2&4\\2&0&1\\4&1&2\end{array}\right]

       \text{Let }P = \dfrac12(A + A^{T})

\implies P = \left[\begin{array}{ccc}4&2&4\\2&0&1\\4&1&2\end{array}\right] \text{ ------ (i)}

\implies P^{T}  = \left[\begin{array}{ccc}4&2&4\\2&0&1\\4&1&2\end{array}\right]

       \text{We can see that }P = P^{T}

 \therefore\text{ }\text{ }P \text{ is a symmetric matrix}

       \text{Substracting }A^{T}  \text{ from }A

\implies A - A^{T} = \left[\begin{array}{ccc}4&5&6\\-1&0&1\\2&1&2\end{array}\right]-\left[\begin{array}{ccc}4&-1&2\\5&0&1\\6&1&2\end{array}\right]

\implies A - A^{T} = \left[\begin{array}{ccc}0&6&4\\-6&0&0\\-4&0&0\end{array}\right]

       \text{Multiplying }\dfrac12 \text{ on both sides}

\implies \dfrac12(A - A^{T}) = \dfrac12\left[\begin{array}{ccc}0&6&4\\-6&0&0\\-4&0&0\end{array}\right]

\implies \dfrac12(A - A^{T}) = \left[\begin{array}{ccc}0&3&2\\-3&0&0\\-2&0&0\end{array}\right]

       \text{Let }Q = \dfrac12(A - A^{T})

\implies Q =\left[\begin{array}{ccc}0&3&2\\-3&0&0\\-2&0&0\end{array}\right] \text{ ------ (ii)}

\implies Q^{T} = \left[\begin{array}{ccc}0&-3&-2\\3&0&0\\2&0&0\end{array}\right]

       \text{We can see that }Q^{T} = -Q

 \therefore \text{ }\text{ }Q \text{ is a skew-symmetric matrix}      

       \text{Adding }P \text{ and }Q

\implies P + Q

       \text{We know that }P = \dfrac12(A+A^{T}) \text{ and }Q = \dfrac12(A-A^{T})

\implies P + Q = \dfrac12(A+A^{T}) + \dfrac12(A-A^{T})

\implies P + Q = \dfrac12(A+A^{T}+ A - A^{T})

\implies P + Q = \dfrac12(2A)

\implies P + Q = A

       \text{From (i) and (ii)}

\implies \boxed{\left[\begin{array}{ccc}4&2&4\\2&0&1\\4&1&2\end{array}\right] + \left[\begin{array}{ccc}0&3&2\\-3&0&0\\-2&0&0\end{array}\right] = A}

       

Similar questions