Math, asked by aleenasaji, 1 year ago

express the ratios cosA tan A and sec A in terms of sin A ​

Answers

Answered by seemanitin1278
2

Answer:

Step-by-step explanation:

Heya!!!

cos A

=====

sin^2 A + cos^2 A= 1

cos^2 A = 1 - sin^2 A

cos A = root of (1-sin^2 A)

=====================

tan A

=====

tan A = sin A / cos A

=sinA / root of ( 1- sin^2 A)

======================

sec A

=====

sec A = 1 / cos A

=1/ root of (1-sin^2 A)

==================

HOPE IT HELPS

pls mark brainliest


aleenasaji: ty
Answered by Anonymous
3

SINCE,

\large\sf{{cos}^{2} A +  {sin}^{2} A = 1,}

THEREFORE, ,

\large\sf{{cos}^{2} A = 1 -   {sin}^{2} A}

i.e., \large\sf{cos \: a =  +  \sqrt{1 -  {sin}^{2} a}}

\huge\sf\purple{cos\:A=√1-{sin}^{2}A}

HENCE,

\large\sf{tan\:A=\frac{sin\:A}{cos\:A}=\frac{sin\:A}{√1-{sin}^{2}A}}

AND

\large\sf{sec\:A=\frac{1}{cos\:A}=\frac{1}{√1-{sin}^{2}A}}

Similar questions
Math, 7 months ago