Math, asked by Anonymous, 9 months ago

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Answers

Answered by Anonymous
21

\red {QUESTION:-}

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

.

\pink{\boxed{\boxed{\boxed{Answer:-}}}}

1)sinA= 1/cosecA = 1 / √(1+cot²A)

[ cot²A+ 1 = cosec²A,

cosecA= √( 1+cot²A)]

2)tanA= 1/cotA

3)secA= √(1+tan²A)

[sec²A= 1+tan²A , secA= √ (1+tan²A)]

secA= √(1+ (1/cot²A)) = √ (1+1/ cot²A)

secA = √(cot²A+1/cot²A)

secA= √1+cot²A/ (cotA)

\red {mark \:  as \:  brainliest \:  answer}

Answered by Anonymous
21

⇒secA=

cotA

cot

2

A+1sinA= 1/cosecA = 1 / √(1+cot²A)

[ cot²A+ 1 = cosec²A,

cosecA= √( 1+cot²A)]

2)tanA= 1/cotA

3)secA= √(1+tan²A)

[sec²A= 1+tan²A , secA= √ (1+tan²A)]

secA= √(1+ (1/cot²A)) = √ (1+1/ cot²A)

secA = √(cot²A+1/cot²A)

secA= √1+cot²A/ (cotA)

Similar questions