Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Answers
Answered by
21
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
.
1)sinA= 1/cosecA = 1 / √(1+cot²A)
[ cot²A+ 1 = cosec²A,
cosecA= √( 1+cot²A)]
2)tanA= 1/cotA
3)secA= √(1+tan²A)
[sec²A= 1+tan²A , secA= √ (1+tan²A)]
secA= √(1+ (1/cot²A)) = √ (1+1/ cot²A)
secA = √(cot²A+1/cot²A)
secA= √1+cot²A/ (cotA)
Answered by
21
⇒secA=
cotA
cot
2
A+1sinA= 1/cosecA = 1 / √(1+cot²A)
[ cot²A+ 1 = cosec²A,
cosecA= √( 1+cot²A)]
2)tanA= 1/cotA
3)secA= √(1+tan²A)
[sec²A= 1+tan²A , secA= √ (1+tan²A)]
secA= √(1+ (1/cot²A)) = √ (1+1/ cot²A)
secA = √(cot²A+1/cot²A)
secA= √1+cot²A/ (cotA)
Similar questions