Expression-sin22cos8+cos158cos98/sin23cos7+cos157cos97 Simplifies to
Answers
Answered by
17
just remember the identities and the conversion of sin to cos and so on....
thanks
thanks
Attachments:
Answered by
16
★ TRIGONOMETRIC EQUATIONS ★
SIN22°COS8° + COS158°COS98°
-------------------------------------------------- =
SIN23°COS7°- COS157°COS91°
SIN158°COS8°- COS158°SIN8°
-------------------------------------------------- =
SIN157°COS7° + COS157°SIN7°
NOW USING... SIN(α-β) = SIN(α)COS(β) - COS(α)SIN(β)...
THEREFORE, WE GET REDUCED EXPRESSION ASLIKE...
SIN(158 - 8) / SIN (157 - 7) = 1
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
SIN22°COS8° + COS158°COS98°
-------------------------------------------------- =
SIN23°COS7°- COS157°COS91°
SIN158°COS8°- COS158°SIN8°
-------------------------------------------------- =
SIN157°COS7° + COS157°SIN7°
NOW USING... SIN(α-β) = SIN(α)COS(β) - COS(α)SIN(β)...
THEREFORE, WE GET REDUCED EXPRESSION ASLIKE...
SIN(158 - 8) / SIN (157 - 7) = 1
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
Similar questions