Math, asked by Dipuu4026, 17 days ago

Extended euclidean algorithm, find the multiplicative inverse of 1234 mod 4321

Answers

Answered by sumitghosh982
3

Step-by-step explanation:

Hence, the multiplicative inverse of 1234 mod 4321 is -1082.

Attachments:
Answered by ravilaccs
0

Answer:

Multiplicative inverse of 1234\ mod\ 4321\ is\ 3239

Step-by-step explanation:

Multiplicative Inverse of $1234 \bmod 4321=-1082$

$(-1082 * 1234) \bmod 4321=(-1335188) \bmod 4321=$

4321 *(-308)=-1330868$ and $4321 *(-309)=-1335189$

So $-309$ is the greatest multiple less than 1330868 , so $4321 *-309=-1335189$ and (-1335188)-(-1335189)=1$,showing it's a multiplicative inverse.

To keep the multiplicative inverse confined to the set GF(4321), we can do clockwork arithmetic by saying $4321-1082=3239$. Note that $3239 * 1234=3996926 \bmod 4321=1$, making 3239 the multiplicative inverse of 1234\ in\ GF(4321).

Attachments:
Similar questions