f ∝ 1/d², when d = 5, f = 18. Hence,
(i) if d = 10 find f.
(ii) when f = 50 find d .
Answers
Answered by
19
In order to remove the proportionality constant we have to bring a constant.
F ∝ 1/d², when d = 5, f = 18.
Let the constant be K.
F = K/d² or, K = F x d² = 18 x 25 = 450.
Now, when d = 10; F = 450/10 = 45.
if, F = 50;
So, we can write it as 50 = K/d²
or, 50 = 450/d²
or, d² = 450/50 = 9
or, d = squareroot of 9 = 3(Ans)
Answered by
40
Hi ,
It is given that ,
f is inversely variance with d²
Therefore ,
f = C/d² [ C is a constant ]
f1 × d1² = f2 × d2²
i ) Here ,
d1 = 5 , f1 = 18
d2 = 10 , f2 = ?
f1 × d1² = f2 × d2²
18 × 5² = f2 × 10²
f2 = ( 18 × 25 )/100
f2 = 450/100
f2 = 4.5
ii ) d1 = 5 , f1 = 18 ,
f2 = 50 , d2 = ?
50 × d2² = 18 × 5²
d2² = ( 18 × 25 )/50
d2² = 9
d2 = √9
d2 = 3
I hope this helps you.
: )
It is given that ,
f is inversely variance with d²
Therefore ,
f = C/d² [ C is a constant ]
f1 × d1² = f2 × d2²
i ) Here ,
d1 = 5 , f1 = 18
d2 = 10 , f2 = ?
f1 × d1² = f2 × d2²
18 × 5² = f2 × 10²
f2 = ( 18 × 25 )/100
f2 = 450/100
f2 = 4.5
ii ) d1 = 5 , f1 = 18 ,
f2 = 50 , d2 = ?
50 × d2² = 18 × 5²
d2² = ( 18 × 25 )/50
d2² = 9
d2 = √9
d2 = 3
I hope this helps you.
: )
Similar questions