Math, asked by rupamkumari31011982, 2 months ago

f x+(1/x) = 3, then, x7 + (1/x7 ) = ?​

Answers

Answered by prajithnagasai
1

Answer:

 {x}^{7}  +  \frac{1}{ {x}^{7} }  = 843

Step-by-step explanation:

Given,

x +  \frac{1}{x}  = 3 - eq.1

Squaring on both sides:

 {x}^{2}  +  \frac{1}{ {x}^{2} }   + 2 = 9

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7 - eq.2

Squaring on both sides:

 {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 49

 {x}^{4}  +  \frac{1}{ {x}^{4} }  = 47 - eq.3

Multiply eq.1 and eq.2:

(x  + \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} } ) = 7 \times 3

( {x}^{3}  +   \frac{1}{ {x}^{3} }  ) + (x  + \frac{1}{x} ) = 21 - eq.4

Substitute eq.1 in eq.4:

 {x}^{3}  +  \frac{1}{ {x}^{3} }  = 18 - eq.5

Multiply eq.3 and eq.5:

( {x}^{4}  +  \frac{1}{ {x}^{4} } )( {x}^{3}  +  \frac{1}{ {x}^{3} } ) = 18 \times 47

( {x}^{7}  +  \frac{1}{ {x}^{7} })  + (x +  \frac{1}{x} ) = 846 - eq.6

Substitute eq.1 in eq.6:

 {x}^{7}  +  \frac{1}{ {x}^{7} }  = 843

Please mark as brainliest and follow.

Similar questions