Math, asked by jjafarali551, 1 year ago

f x= 2 and x=0 are root of the polynomial f(x)=2 x^3+5 x^2+ax+b , then find the value of a and b

Answers

Answered by ShuchiRecites
5
\textit{ \textbf{ Hello Mate! }}

As mentioned, x = 2 and 0 are root of polynomial therefore value of f(2) and f(0) will be 0.

Please refer to attatchment.

\boxed{ \textsf{ Hence,\:a=-18\:and\:b=0 }}

Have great future ahead!
Attachments:
Answered by Divyaalia
8
f(x) = {2x}^{3} + {5x}^{2} + ax + b \\ \\ on \: putting \: x = 2 \\ f(2) = 2(2) {}^{3} + 5(2) {}^{2} + a(2) + b = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2(8) + 5(4) + a(2) + b = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 16 + 20 + 2a + b = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 36 + 2a + b = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2a + b = - 36 \:  ......(1)

on \: putting \: x = 0 \\ f(0) = 2(0) {}^{3} + 5(0) {}^{2} + a(0) + b = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2(0) + 5(0) + a(0) + b = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 0 + 0 + 0 + b = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: b = 0

on \: putting \: the \: value \: of \: b \: in \: equation \: (1)
2a + 0 = - 36 \\ \: \: \: \: \: \: \: 2a = - 36 \\ \: \: \: \: \: \: \: \: \: a = \frac{ - 36}{2} \\ \\ \: \: \: \: \: \: \: \: a = - 18

The value of a is -18
and the value of b is 0

ShuchiRecites: wlcm
jjafarali551: thanku
ShuchiRecites: thanks for attempting brainliest
ShuchiRecites: Thanks both friends
ShuchiRecites: sorry, I felt it was in my answers section
Similar questions