Math, asked by nishasingh3114, 11 months ago

F(x) = 2x^2 - 3x + 1, find α-β? With complete solutions

Answers

Answered by LovelyG
1

Answer:

F(x) = 2x² - 3x + 1

Here, we have ;

Sum of zeroes = - b/a

⇒ α + β = - (-3)/2

⇒ α + β = 3/2

Product of zeroes = c/a

⇒ αβ = 1/2

We know that ;

 \boxed{ (\alpha  -  \beta ) {}^{2}  = ( \alpha   + \beta ) {}^{2}  - 4 \alpha  \beta } \\  \\ \rightarrow   (\alpha  - \beta ) {}^{2}  = ( \frac{3}{2} ) {}^{2}  - 4 \times  \frac{1}{2}  \\  \\ \rightarrow   (\alpha  - \beta ) {}^{2}  = \frac{9}{4}  - 2 \\  \\ \rightarrow   (\alpha  - \beta ) {}^{2}  = \frac{9 - 8}{4}  \\  \\ \rightarrow   (\alpha  - \beta ) {}^{2}  = \frac{1}{4}  \\  \\ \rightarrow \alpha  - \beta   = \sqrt{ \frac{1}{4} }  \\  \\ \boxed{ \bf \rightarrow \alpha  - \beta  = \pm  \frac{1}{2}}


nishasingh3114: Thanks for your help
LovelyG: Welcome :)
Answered by saivivek16
0

Answer:

Step-by-step explanation:

Sum of zeros =3/2

Product=-6

Now,

Alpha -ẞ²=alpha +ß²-4alpha ß

=3/2²-4×1/2

=9-8/4

=√1/4

=1/2.

Hope it will help you


truebrainlist: hi
truebrainlist: hii
Similar questions