Math, asked by rudradevraj1pai2hd, 1 year ago

F(x)= 3x^3+8x^2-20x-16. Factorise it

Answers

Answered by Anonymous
5

using \: factor \: theorm \:  \\  \\  =  \geqslant let \: x = 2 \\  \\ putting \: value \\  \\  =  \geqslant f(x) = 3 {x}^{3}  + 8 {x}^{2}  - 20x - 16 \\  \\  =  \geqslant f(2) = 3(2) {}^{3}  + 8(2) {}^{2}  - 20 \times 2 - 16 \\  \\  =  \geqslant f = 24 + 32 - 40 - 16 \\  \\  =  \geqslant 0 \:  \\  \\ so \:  \:  x - 2\:  \\ it \: is \: the \: factor \: of \: 3 {x}^{3}  + 8 {x}^{2}  - 20x - 16 \\  \\  = \geqslant dividing \: it

by \: dividing \: we \: get \:  \\  \\  =  \geqslant 3 {x}^{2}  + 14x + 8 \\  \\  =  \geqslant now \: spriting \: the \: middle \: term \\  \\  =  \geqslant 3 {x}^{2}  + 14x + 8 \\  \\  =  \geqslant spirit \: it \: and \: u \: will \: get \: the \:  \\ answer

Attachments:
Similar questions