Math, asked by jatinratawa, 11 months ago

f(x) = cos x + sin x if x ≥ 0 (and) x + k if x<0 . Find value of k if limx—›0 exists​

Answers

Answered by anujdiwakr334
1

Answer:

Let u = f (x) and v = g (x) be two functions of x, then to find ... k = 1. Thus, f is continuous at x = 0 if k = 1. Example 2 ... Example 16 If f (x) = |cos x – sinx|, find f ...

Answered by lublana
2

The value of k=1 when lim x tends to 0 exist.

Step-by-step explanation:

f(x)=cosx+sinx if x\geq0

f(x)=x+k if x<0

When x tends to zero then limit exist

When limit exits

Then, RHL=LHL

\lim_{x\rightarrow 0+}f(x)=\lim_{x\rightarrow 0-}f(x)

\lim_{x\rightarrow 0+}(cosx +sin x)=\lim_{x\rightarrow 0-}(x+k)

cos 0+sin 0=0+k

1+0=k

By using  cos 0^{\circ}=1, sin 0=0

k=1

Hence, the value of k=1 when lim x tends to 0 exist.

#Learns more:

https://brainly.in/question/1006443:Answered by Aroy

Similar questions