Math, asked by vishnupratap20pb5e5l, 1 year ago

f(x) = log{(1-x)/(1+x)} then f{(a+b) /(1+ab)} is

Answers

Answered by Anonymous
1
Given,
f(x) =  log( \frac{1 - x}{1 + x} )
Using the Logarithm property,
 log( \frac{m}{n} )  =  log(m)  - log(n)
So,
f(x) =  log(1 - x)  -  log(1 + x)
As per the problem,
Here,
 x = \frac{a + b}{1 + ab}
f(\frac{a + b}{1 + ab}) =  log(1 -  \frac{a + b}{1 + ab} )  -  log(1 +  \frac{ a+b }{1 + ab} )
f(\frac{a + b}{1 + ab}) =  log(\frac{1 + ab  -  a  - b}{1 + ab} )  -  log( \frac{ 1 +  ab+ a+b }{1 + ab} )
f(\frac{a + b}{1 + ab}) =  log(\frac{(1 - a) (1 - b)}{1 + ab} )  -  log( \frac{ (1 + a)(1 + b) }{1 + ab} )
Again using property of logarithm as mentioned above,
f(\frac{a + b}{1 + ab}) =  log(\frac{(1 - a) (1 - b)}{(1 + a ) (1 + b )})

Hope it helped you!
Don't forget to give Brainliest Answer!
Similar questions