Math, asked by friend1263, 1 year ago

f (x) = x² + 1 / x - 3 the first derivative is​

Answers

Answered by throwdolbeau
2

Answer :-

= x² - 6x - 1 / x² - 6x + 9

Explanation :-

f(x) = x² + 1 / x - 3

u = x² + 1

v = x - 3

u' = 2x

v' = 1

f' (x) = u' . v - v' . u / v²

       = 2x . (x - 3) - 1 . x² + 1 / (x - 3)²

       = 2x² - 6x - x² - 1 / (x - 3)²

       = x² - 6x - 1 / x² - 6x + 9

Answered by AbhijithPrakash
7

Answer:

\dfrac{d}{dx}\left(\frac{x^2+1}{x-3}\right)=\dfrac{x^2-6x-1}{\left(x-3\right)^2}

Step-by-step explanation:

\dfrac{d}{dx}\left(\dfrac{x^2+1}{x-3}\right)

\mathrm{Apply\:the\:Quotient\:Rule}:\quad \left(\dfrac{f}{g}\right)^'=\dfrac{f\:'\cdot g-g'\cdot f}{g^2}

=\dfrac{\dfrac{d}{dx}\left(x^2+1\right)\left(x-3\right)-\dfrac{d}{dx}\left(x-3\right)\left(x^2+1\right)}{\left(x-3\right)^2}

\dfrac{d}{dx}\left(x^2+1\right)

\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'

=\dfrac{d}{dx}\left(x^2\right)+\dfrac{d}{dx}\left(1\right)

=2x+0

\mathrm{Simplify}

=2x

\dfrac{d}{dx}\left(x-3\right)

\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'

=\dfrac{d}{dx}\left(x\right)-\dfrac{d}{dx}\left(3\right)

=1-0

\mathrm{Simplify}

=1

=\dfrac{2x\left(x-3\right)-1\cdot \left(x^2+1\right)}{\left(x-3\right)^2}

\mathrm{Simplify\:}\dfrac{2x\left(x-3\right)-1\cdot \left(x^2+1\right)}{\left(x-3\right)^2}

\mathrm{Multiply:}\:1\cdot \left(x^2+1\right)=\left(x^2+1\right)

=\dfrac{2x\left(x-3\right)-\left(x^2+1\right)}{\left(x-3\right)^2}

\mathrm{Expand}\:2x\left(x-3\right)-\left(x^2+1\right)

\mathrm{Expand}\:2x\left(x-3\right):\quad 2x^2-6x

=2x^2-6x-\left(x^2+1\right)

-\left(x^2+1\right):\quad -x^2-1

-\left(x^2+1\right):\quad -x^2-1

\mathrm{Simplify}\:2x^2-6x-x^2-1:\quad x^2-6x-1

=x^2-6x-1

=\dfrac{x^2-6x-1}{\left(x-3\right)^2}

Attachments:
Similar questions