Math, asked by StrongGirl, 9 months ago

F(x+y)=f(x).f(y) x,y€N f(1)=2 then sigma k=1 to 50 f(4+k)=?

Answers

Answered by shadowsabers03
5

The function f is defined in such a way that,

\longrightarrow f(x+y)=f(x)\cdot f(y)

And given that f(1)=2.

Put y=1. Then,

\longrightarrow f(x+1)=f(x)\cdot f(1)

\longrightarrow f(x+1)=2f(x)

This implies (n+1)^{th} term of the sequence f(1),\ f(2),\ f(3),\dots is twice its n^{th} term.

Each term gets multiplied by 2 to obtain next term. And first term is f(1)=2.

So this sequence is a GP of first term a=2 and common ratio r=2>1.

n^{th} term of this GP is,

\longrightarrow f(n)=2\cdot2^{n-1}

\longrightarrow f(n)=2^n

Sum of first n terms of this GP is,

\displaystyle\longrightarrow\sum_{k=1}^{n}f(k)=\dfrac{2(2^n-1)}{2-1}

\displaystyle\longrightarrow\sum_{k=1}^nf(k)=2(2^n-1)

Therefore,

\displaystyle\longrightarrow\sum_{k=1}^{50}f(4+k)=\sum_{k=5}^{54}f(k)

\displaystyle\longrightarrow\sum_{k=1}^{50}f(4+k)=\sum_{k=1}^{54}f(k)-\sum_{k=1}^{4}f(k)

\displaystyle\longrightarrow\sum_{k=1}^{50}f(4+k)=2(2^{54}-1)-2(2^4-1)

\displaystyle\longrightarrow\underline{\underline{\sum_{k=1}^{50}f(4+k)=2^{55}-2^5}}

Answered by pulakmath007
24

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

If in a Geometric Progression with first term = a and common ratio = r then the sum of first n terms is given by

\displaystyle \: a \times  \frac{ {r}^{n}  - 1}{r - 1}  \:  \:  \:  \:  \:  \:  \:  \: where \:  \: r > 1

EVALUATION

It is given that

f(x + y) = f(x)f(y)

So

f(2) = f(1 + 1) = f(1)(1) = 2 \times 2 =  {2}^{2}

f(3) = f(2 + 1) = f(2)(1) =  {2}^{2}  \times 2 =  {2}^{3}

f(4) = f(3 + 1) = f(3)(1) =  {2}^{3}  \times 2 =  {2}^{4}

.

.

.

Similarly

f(n)  =  {2}^{n}

Now

\displaystyle \sum\limits_{k=1}^{50} f(4 + k)

 = f(5) + f(6) + f(7) + ....... + f(54)

 =  {2}^{5}  +  {2}^{6}  + {2}^{7}  + ..... + {2}^{54}

This is a Geometric Progression with

first  \: term =  {2}^{5}  \:  \: and \: common \: ratio \:  = 2

So

\displaystyle \sum\limits_{k=1}^{50} f(4 + k)

\displaystyle \:  =  {2}^{5}  \times  \frac{ {2}^{50}  - 1}{2 - 1}

\displaystyle \:  =  {2}^{5}  \times (  {2}^{50}  - 1 \: )

 = {2}^{55}  - {2}^{5}

Similar questions