Math, asked by prakashcjha2007, 11 months ago

factorice (x-y)^3+(y-z)^3+(z-x)^3

Answers

Answered by sohamdas59
1

(x-y)^3+(y-z)^3+(z-x)^3

=(x-y)(x^2+xy +y^2)+(y-z)(y^2+yz+z^2)+(z-x)(z^2+xz+x^2)

Step-by-step explanation:

please mark me as a brain list......

Answered by Anonymous
3

Answer:

3 [ x²(z - y) + y²(x - z) + z²(y - x) ]

Step-by-step explanation:

Given : (x - y)³ + (y - z)³ + (z - x)³

Identity : (a - b)³ = a³ - b³ - 3a²b + 3ab²

→ [ (x)³ - (y)³ - 3(x)²(y) + 3(x)(y)² ] + [ (y)³ - (z)³ - 3(y)²(z) + 3(y)(z)² ] + [ (z)³ - (x)³ - 3(z)²(x) + 3(z)(x)² ]

→ [ x³ - y³ - 3x²y + 3xy² ] + [ y³ - z³ - 3y²z + 3yz² ] + [ z³ - x³ - 3z²x + 3zx² ]

  • Opening the brackets.

→ x³ - y³ - 3x²y + 3xy² + y³ - z³ - 3y²z + 3yz² + z³ - x³ - 3z²x + 3zx²

  • Writing the common terms together.

→ x³ - x³ - y³ + y³ - z³ + z³ + 3zx² - 3x²y + 3xy² - 3y²z + 3yz² - 3z²x

→ 3zx² - 3x²y + 3xy² - 3y²z + 3yz² - 3z²x

We can write this as :

→ 3(zx² - x²y + xy² - y²z + yz² - z²x)

  • Taking common terms out.

3 [ x²(z - y) + y²(x - z) + z²(y - x) ]

_______________________________

Or

_______________________________

Given : (x - y)³ + (y - z)³ + (z - x)³

Identity : a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

Here, a = x - y, b = y - z, c = z - x

  • Finding out (a + b + c).

→ [ (x - y) + (y - z) + (z - x) ]

→ [ x - y + y - z + z - x ]

→ 0

Therefore, a + b + c = 0

Hence,

→ a³ + b³ + c³ - 3abc = (0)(a² + b² + c² - ab - bc - ca)

→ a³ + b³ + c³ - 3abc = 0

a³ + b³ + c³ = 3abc ...(1)

Now,

Putting the values of a, b and c in (1).

→ (x - y)³ + (y - z)³ + (z - x)³ = 3 [ (x - y)(y - z)(z - x) ]

Further solving the R.H.S., we get

→ 3 [ x(y - z) - y(y - z) (z - x) ]

→ 3 [ xy - xz - y² + yz (z - x) ]

→ 3 [ z(xy - xz - y² + yz) - x(xy - xz - y² + yz) ]

→ 3 [ xyz - xz² - y²z + yz² - x²y + x²z + xy² - xyz ]

  • Writing common terms together.

→ 3 [ xyz - xyz + x²z - x²y + xy² - y²z + yz² - xz² ]

→ 3 [ x²z - x²y + xy² - y²z + yz² - xz² ]

  • Taking common terms out.

3 [ x²(z - y) + y²(x - z) + z²(y - x) ]

Similar questions