Math, asked by dibyajyotid78172, 5 hours ago

factories :(2a+3)x^2 -9ax- (3-7a)​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:(2a + 3) {x}^{2} - 9ax - (3 - 7a)

can be rewritten as

\rm \:  =  \: \:(2a + 3) {x}^{2} - 9ax  + (7a - 3)

Split 9a as 7a + 2a

\rm \:  =  \: \:(2a + 3) {x}^{2} - \red{ (7a + 2a)x}  + (7a - 3)

Adding and Subtracting 3, we get

\rm \:  =  \: \:(2a + 3) {x}^{2} - \red{ (7a + 2a + 3 - 3)x}  + (7a - 3)

\rm \:  =  \: \:(2a + 3) {x}^{2} - \red{ \bigg[( 2a + 3)  + (7a- 3)\bigg]x}  + (7a - 3)

\rm \:  =  \: \:(2a + 3) {x}^{2}  - ( 2a + 3) x  - (7a- 3)x  + (7a - 3)

\rm \:  =  \: \:(2a + 3)x\bigg[x - 1\bigg]   - (7a- 3)\bigg[x - 1\bigg]

\rm \:  =  \: \:(x - 1)\bigg[(2a + 3)x - (7a - 3)\bigg]

Hence,

Factorization of

\rm :\longmapsto\:(2a + 3) {x}^{2} - 9ax - (3 - 7a)

is

\rm \:  =  \: \:(x - 1)\bigg[(2a + 3)x - (7a - 3)\bigg]

Additional Information :-

\green{ \boxed{ \sf{ \: {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}}

\green{ \boxed{ \sf{ \: {(x  -  y)}^{2} =  {x}^{2}  -  2xy +  {y}^{2}}}}

\green{ \boxed{ \sf{ \: {(x  -  y)}^{3} =  {x}^{3}  -  3xy(x - y)  -   {y}^{3}}}}

\green{ \boxed{ \sf{ \: {(x +  y)}^{3} =  {x}^{3} +  3xy(x + y)  + {y}^{3}}}}

Similar questions