Math, asked by bhavaniravada68, 6 hours ago

Find the maximum and minimum values of 4xcube +9xsquare-12x+1

Answers

Answered by kamalhajare543
5

 \orange{ \sf  \: 4x {}^{3}  + 9x {}^{2}  - 12 {x}^{}  + 1}

The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of

 \sf \: ax^{n} \: is \: \: nax^{n-1}.

 \pink{ \sf = > 3\times 4x^{3-1}+2\times 9x^{2-1}-12x^{1-1}}

 \sf \: \color{red}Multiply \: 3 \: times \: 4.

 \pink{ \sf= > 12x^{3-1}+2\times 9x^{2-1}-12x^{1-1}}

 \sf \: \color{red}Subtract \: 1 \: from \: 3..

 \pink{ \sf = > 12x^{2}+2\times 9x^{2-1}-12x^{1-1}}

  \sf \: \color{red}Multiply \: 2 \: times \: 9..

 \pink{ \sf= > 12x^{2}+18x^{2-1}-12x^{1-1}}

 \sf \: \color{red}Subtract \: 1 \: from \: 2..

 \pink{ \sf= > 12x^{2}+18x^{1}-12x^{1-1}}

 \sf \: \color{red}Subtract \: 1 \: from \: 1..

 \pink{ \sf= > 12x^{2}+18x^{1}-12x^{0}}

 \sf \: \color{red}For \: any \: term \: t, \: t^{1}

 \sf \pink{= > 12x^{2}+18x-12x^{0}}

 \sf\color{red}For \: any \: term \: t \: except \: 0, t^{0}=1.

Similar questions