Factories :
Answers
Answered by
1
hey!!!
given :- 2x³ - 3x² - 17x + 30
factors of 30 = ±1, ±30, ±2, ±15, ±3, ±10
first, let us substitute 1 in the polynomial.
>> 2(1)³ - 3(1)² - 17(1) + 30
= 2 - 3 - 17 + 30
= 12
now, -1
>> 2(-1)³ - 3(-1)² - 17(-1) + 30
= -2 - 3 + 17 + 30
= 42
now, 30
>> 2(30)³ - 3(30)² - 17(30) + 30
= 54000 - 2700 - 510 + 30
= 50820
now, -30
>> 2(-30)³ - 3(-30)² - 17(-30) + 30
= -54000 -2700 + 510 + 30
= -56620
now, 2
>> 2(2)³ - 3(2)² - 17(2) + 30
= 16 - 12 - 34 + 30
= -30 + 30
= 0
hence, (x-2) is a factor of 2x³ - 3x² - 17x + 30
now, refer to the attachment ⬆⬆⬆
we got 2x² + x - 15 after division.
now factorise it by splitting method.
>> 2x² + x - 15
= 2x² + (6x - 5x) - 15
= 2x² + 6x - 5x - 15
= 2x(x+3)-5(x+3)
= (x+3)(2x-5)
therefore 2x³ - 3x² - 17x + 30 = (x-2)(x+3)(2x-5)
cheers!!!
given :- 2x³ - 3x² - 17x + 30
factors of 30 = ±1, ±30, ±2, ±15, ±3, ±10
first, let us substitute 1 in the polynomial.
>> 2(1)³ - 3(1)² - 17(1) + 30
= 2 - 3 - 17 + 30
= 12
now, -1
>> 2(-1)³ - 3(-1)² - 17(-1) + 30
= -2 - 3 + 17 + 30
= 42
now, 30
>> 2(30)³ - 3(30)² - 17(30) + 30
= 54000 - 2700 - 510 + 30
= 50820
now, -30
>> 2(-30)³ - 3(-30)² - 17(-30) + 30
= -54000 -2700 + 510 + 30
= -56620
now, 2
>> 2(2)³ - 3(2)² - 17(2) + 30
= 16 - 12 - 34 + 30
= -30 + 30
= 0
hence, (x-2) is a factor of 2x³ - 3x² - 17x + 30
now, refer to the attachment ⬆⬆⬆
we got 2x² + x - 15 after division.
now factorise it by splitting method.
>> 2x² + x - 15
= 2x² + (6x - 5x) - 15
= 2x² + 6x - 5x - 15
= 2x(x+3)-5(x+3)
= (x+3)(2x-5)
therefore 2x³ - 3x² - 17x + 30 = (x-2)(x+3)(2x-5)
cheers!!!
Attachments:
Similar questions