Math, asked by farheenkhanam6118, 1 year ago

Factories the quadratic equation

Attachments:

Answers

Answered by YashRajpootThakur
3
Solution...

 {3x}^{2}  - 2 \sqrt{6}  + 2
 {3x}^{2}  -  \sqrt{6} x -  \sqrt{6} x + 2
 \sqrt{3} x( \sqrt{3} x -  \sqrt{2}) -  \sqrt{2}( \sqrt{3} x -   \sqrt{2} )
( \sqrt{3} x -  \sqrt{2} )( \sqrt{3} x - 2)
Therefore,
x =  \sqrt{2}  \div  \sqrt{3} \:  or \: x =  \sqrt{2}  \div  \sqrt{3}
☆☆☆☆HOPE THIS WILL HELP YOU.......

YashRajpootThakur: WHY???
YashRajpootThakur: OKK....
YashRajpootThakur: No..... Thanks....
YashRajpootThakur: LOVE...
Answered by Sharad001
53

Question :-

Factories it

→ 3x² -2√6x +2 = 0

Answer :-

 \implies \:  \boxed{ \sf{ x \:  =  \frac{ \sqrt{2} }{ \sqrt{3} } }}

Explanation :-

Method (1)

Given Quadratic equation is ↓

 \rightarrow \sf{ 3 {x}^{2}  - 2 \sqrt{6} x + 2 = 0} \\  \\  \rightarrow \sf{3 {x}^{2}  -  \sqrt{6} x -  \sqrt{6} x + 2 = 0} \\  \\  \rightarrow \sf{\sqrt{3}x ( \sqrt{3} x -   \sqrt{2} ) -  \sqrt{2} ( \sqrt{3} x -  \sqrt{2} ) = 0} \\  \\  \rightarrow \sf{( \sqrt{3} x -  \sqrt{2} )( \sqrt{3} x -  \sqrt{2} ) = 0 }\\  \\   \rightarrow \sf{{( \sqrt{3}x -  \sqrt{2} ) }^{2}  = 0} \\  \\  \rightarrow \sf{\sqrt{3} x -  \sqrt{2}  = 0} \\  \\  \rightarrow  \boxed{\sf{x \:  =  \sqrt{ \frac{2}{3} } }}

\___________________/

For verification :-

 \sf{put \: x \:  =  \frac{ \sqrt{2} }{ \sqrt{3} } \:  in \: equation} \\  \\  \rightarrow \:  3 { \bigg( \frac{ \sqrt{2} }{ \sqrt{3}  } \bigg) }^{2}  - 2 \sqrt{6}   \frac{ \sqrt{2} }{ \sqrt{3} }  + 2 = 0 \\  \\  \rightarrow \: 3 \times  \frac{2}{3}  - 2 \sqrt{2}  \sqrt{2}  + 2 = 0 \\  \\  \rightarrow \: 2 - 4 + 2 = 0 \\  \\  \rightarrow \: 0 = 0 \\  \\ \tt hence \: verified

\___________________/

Method (2)

We have ,

 \rightarrow \sf{{3}  {x}^{2}  - 2 \sqrt{6} x + 2 = 0} \\

We can write it,

 \rightarrow \sf{ {( \sqrt{3}x) }^{2}  - 2 \sqrt{2}  \sqrt{3} x +  {( \sqrt{2}) }^{2}  = 0} \\  \\  \because \sf{  {x}^{2}  - 2xy +  {y}^{2}  =  {(x  -  y)}^{2} } \\  \\  \rightarrow \sf{ {( \sqrt{3}x -  \sqrt{2}  )}^{2}  = 0} \\  \\  \rightarrow  \boxed{\sf{x \:  =   \frac{ \sqrt{2} }{ \sqrt{3} } }}

\__________________/

#answerwithquality

#BAL

Similar questions