Math, asked by khitanjalirana, 3 months ago

factories : x³ + 13x² + 32x + 20​

Answers

Answered by dhakalb645
1

Answer:

take X common and ther will be

Step-by-step explanation:

x^2+13x+32+20

then do it

Answered by Anonymous
4

AnswEr-:

  • \underline{\boxed {\mathrm {\blue{ Factors \:are\:-:(x+1)(x + 10)   ( x + 2)} }}}

Explanation-:

  • Factorise -: x³ + 13x² + 32x + 20 .

\dag{\mathrm { Solution \:of\: Question-:}}

  • \longrightarrow {\mathrm { x^{3}+ 13x^{2} + 32x + 20 }}

\sf{\dag{ By\:Using \:Sum-\:Product \:pattern-:}}

  • \sf{In\:Second \:Term\:-:}

  • \longrightarrow {\mathrm { x^{3} + \purple{13x^{2}} + 32x + 20 }}

  • \longrightarrow {\mathrm { x^{3} + \purple {x^{2} + 12x^{2}} +40x +   20 }}

  • \sf{In\:Third \:Term\:-:}

  • \longrightarrow {\mathrm { x^{3} + x^{2} + 12x^{2} + \purple{32x}  + 20 }}

  • \longrightarrow {\mathrm { x^{3} + x^{2} + 12x^{2} +\purple {12x+20x} +   20 }}

\sf{ Now\:Finding \:Common-\:Factors \:from\:each\:term-:}

  • \longrightarrow {\mathrm { x^{3} + x^{2} + 12x^{2}+ 12x + 20x +  20 }}

\sf{ By\:Taking\:x^{2}\:as \:common\:in\:First \:term-:}

  • \longrightarrow {\mathrm { \purple {x^{3} + x^{2}} + 12x^{2}+ 12x + 20x +  20 }}

  • \longrightarrow {\mathrm { \purple {x^{2} (x + 1)} + 12x^{2}+ 12x + 20x +  20 }}

\sf{ By\:Taking\:12x\:as \:common\:in\:Second \:term-:}

  • \longrightarrow {\mathrm { x^{2} (x + 1) + \purple {12x^{2}+ 12x} + 20x +  25 }}

  • \longrightarrow {\mathrm { x^{2} (x + 1) + \purple {12x(x+ 1)} + 20x +  25 }}

\sf{ By\:Taking\:20\:as \:common\:in\:Second \:term-:}

  • \longrightarrow {\mathrm { x^{2} (x + 1) + 12x(x+ 1) + \purple{20x +  20} }}

  • \longrightarrow {\mathrm { x^{2} (x + 1) + 12x(x+ 1) + \purple{20(x +  1) }}}

\sf{ By\:Taking\:(x+1)\:as \:common\:in\:expression-:}

  • \longrightarrow {\mathrm { x^{2} \purple{(x + 1)} + 12x\purple{(x+ 1)} +20 \purple{(x +  1)} }}

  • \longrightarrow {\mathrm { (x+1 ) \purple{(x^{2} + 12x + 20)}}}

\sf{\dag{ By\:Using \:Sum-\:Product \:pattern\:in\:formed\:expression-:}}

  • \longrightarrow {\mathrm { (x+1 ) \purple{ (   x^{2} + 12x + 20)} }}

  • \longrightarrow {\mathrm { (x+1 ) \purple {( ( x^{2} + 10x+2x + 20)} }}

\sf{ Now\:Finding \:Common-\:Factors \:from\:new\:formed\:expression-:}

  • \longrightarrow {\mathrm { (x+1 ) \[ ( x^{2} + 10x+2x + 20)\] }}

  • \sf{ By\:Taking\:x\:as \:common\:in\:first \:term\:in\:formed\:expression-:}

  • \longrightarrow {\mathrm { (x+1 ) \[ ( \purple{x^{2} + 10x}+2x + 20)\] }}

  • \longrightarrow {\mathrm { (x+1 ) \[ ( \purple{x(x+10 )}+2x + 20)\] }}

  • \sf{ By\:Taking\:2\:as \:common\:in\:second\:term\:in\:formed\:expression-:}

  • \longrightarrow {\mathrm { (x+1 ) \[ ( x(x+10 )+\purple {2x + 20})\] }}

  • \longrightarrow {\mathrm { (x+1 ) \[  x(x+10 )+\purple {2(x + 10)})\] }}

\sf{ Now,\:Rewrite \:the\:factored\:term\:\:-:}

  • \longrightarrow {\mathrm {\purple{(x+1 ) \[  x(x+10 )+\purple {2(x + 10)})\]}  }}

  • \longrightarrow {\mathrm { \purple{(x+1)(x+10)(x+2)} }}

Hence ,

  • \underline{\boxed {\mathrm {\blue{ Factors \:are\:-:(x+1)(x + 10)   ( x + 2)} }}}

_________________________________________________________

Similar questions