Factories ( x6 - y6) , (a³-2√2b³),(2a7-128a ).
Answers
Answered by
30
(1) ( X^6 - Y^6 )
=> ( X³ )² - ( Y³)²
=> ( X³ - Y³ ) ( X³ + Y³ )
=> ( X - Y ) ( X² + XY + Y² ) ( X + Y ) ( X² - XY + Y²).
=> ( X - Y ) ( X + Y ) ( X² + XY + Y² ) ( X² - XY + Y²).
Therefore,
( X^6 - Y^6 ) = ( X - Y ) ( X + Y ) ( X² + XY + Y² ) ( X² - XY + Y² ).
(2) a³ - 2√2b³
=> [ (a)³ - (√2b)³ ]
=> ( a - √2b ) ( a² + √2ab + 2b² )
Hence,
( a³ - 2√2b³ ) = ( a - √2b ) ( a² + √2ab + 2b²).
(3) 2a^7 - 128a
=> 2a ( a^6 - 64 )
=> 2a [ (a³)² - (8)² ]
=> 2a ( a³ + 8 ) ( a³ - 8 )
=> 2a ( a³ + 2³ ) ( a³ - 2³ )
=> 2a ( a + 2 ) ( a² - 2a + 4 ) ( a² + 2a + 4 ).
=> 2a ( a + 2 ) ( a - 2 ) ( a² + 2a + 4 ) ( a² - 2a + 4 ).
=> ( X³ )² - ( Y³)²
=> ( X³ - Y³ ) ( X³ + Y³ )
=> ( X - Y ) ( X² + XY + Y² ) ( X + Y ) ( X² - XY + Y²).
=> ( X - Y ) ( X + Y ) ( X² + XY + Y² ) ( X² - XY + Y²).
Therefore,
( X^6 - Y^6 ) = ( X - Y ) ( X + Y ) ( X² + XY + Y² ) ( X² - XY + Y² ).
(2) a³ - 2√2b³
=> [ (a)³ - (√2b)³ ]
=> ( a - √2b ) ( a² + √2ab + 2b² )
Hence,
( a³ - 2√2b³ ) = ( a - √2b ) ( a² + √2ab + 2b²).
(3) 2a^7 - 128a
=> 2a ( a^6 - 64 )
=> 2a [ (a³)² - (8)² ]
=> 2a ( a³ + 8 ) ( a³ - 8 )
=> 2a ( a³ + 2³ ) ( a³ - 2³ )
=> 2a ( a + 2 ) ( a² - 2a + 4 ) ( a² + 2a + 4 ).
=> 2a ( a + 2 ) ( a - 2 ) ( a² + 2a + 4 ) ( a² - 2a + 4 ).
Answered by
7
Heya!!
---------
========================================================
---------
========================================================
Similar questions