Math, asked by gaurav2496, 1 year ago

factorisation
9a ^{4 }  - 24a {}^{2}b {}^{2}  + 16b {}^{4}  - 25b

Answers

Answered by afsanafatima5
6
9a⁴ — 24a²b² + 16b⁴ — 256

= (9a⁴ — 24a²b² + 16b⁴) — 256

= [(3a²)² — 2 x 3a² x 4b² + (4b²)²] —162

= (3a² —402)² — 162

= [(3a² – 4b²) -16] [(3a² – 42) + 16]

= (3a² – 4b² -16) (3a² – 4b² + 16)

Hope it will help you
Answered by amitnrw
2
9a^4 - 24a^2b^2 + 16b^4 - 25b

=(3a^2)^2- 2×3a^24b^2 + (4b^2)^2 - 25b

=(3a^2 - 4b^2)^2 - (5rootb)^2

=(3a^2 - 4b^2 + 5rootb)(3a^2 - 4b^2 - 5rootb)

so answer is

=(3a^2 - 4b^2 + 5rootb)(3a^2 - 4b^2 - 5rootb)

if we consider 25b as 256
then 256 = 16^2
so 5rootb will be replaced by 16
Similar questions