Math, asked by noord8202, 1 month ago

Factorise :
1. (a+2b) (3a+b) - (a+b) + (a+2b)+(a+2b)²​

Attachments:

Answers

Answered by itsyourkaminee
4

(a + 2b) (3a + b) – (a + b) (a + 2b) + (a + 2b)2=

(a + 2b) (3a + b – a – b + a + 2b)=

(a + 2b) (3a + 2b)

Answered by ajr111
12

Answer:

\underline{\boxed{(a + 2b)(3a+2b) }}

Step-by-step explanation:

Given :

(a+2b) (3a+b) - (a+b)(a+2b)+(a+2b)²​

To Find :

Factorise of given expression

Solution :

(a+2b) (3a+b) - (a+b) (a+2b)+(a+2b)²​

  • Taking (a+2b) common

⇒ (a+2b) [(3a+b) - (a+b) + (a+2b)]

⇒ (a + 2b) [3a + b - a - b + a+ 2b]

⇒ (a + 2b) (3a +2b)

(a + 2b) (3a+2b)

So, this is the reduced form till which it can be factorised

Hope it helps!!

Similar questions